
AsteriskTM

The Future of Telephony

,TITLE.24808 Page i Wednesday, August 31, 2005 8:52 AM

Other resources from O’Reilly

Related titles Ethernet: The Definitive
Guide

Switching to VoIP

TCP/IP Network
Administration

T1: A Survival Guide

oreilly.com oreilly.com is more than a complete catalog of O’Reilly books.
You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today with a free trial.

,TITLE.24808 Page ii Wednesday, August 31, 2005 8:52 AM

Asterisk ™

The Future of Telephony

Jim Van Meggelen, Jared Smith, and Leif Madsen

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

,TITLE.24808 Page iii Wednesday, August 31, 2005 8:52 AM

Asterisk™: The Future of Telephony
by Jim Van Meggelen, Jared Smith, and Leif Madsen

Copyright © 2005 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our corporate/insti-
tutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides

Production Editor: Colleen Gorman

Cover Designer: Ellie Volckhausen

Interior Designer: David Futato

Printing History:

September 2005: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Asterisk™: The Future of Telephony, the image of starfish, and related trade dress
are trademarks of O’Reilly Media, Inc. Asterisk™ is a trademark of Digium, Inc. Asterisk: The Future of
Telephony is published under the Creative Commons “Commons Deed” license
(http://creativecommons.org/licenses/by-nc-nd/2.0/ca/).

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 0-596-00962-3

[M]

,COPYRIGHT.10030 Page iv Tuesday, August 30, 2005 9:06 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

ix

Foreword

Once upon a time, there was a boy.

...with a computer

...and a phone.

This simple beginning begat much trouble!

It wasn’t that long ago that telecommunications, both voice and data, as well as soft-
ware, were all proprietary products and services, controlled by one select club of
companies that created the technologies, and another select club of companies who
used the products to provide services. By the late 1990s, data telecommunications
had been opened by the expansion of the Internet. Prices plummeted. New and inno-
vative technologies, services, and companies emerged. Meanwhile, the work of free
software pioneers like Richard Stallman, Linus Torvalds, and countless others were
culminating in the creation of a truly open software platform called Linux (or GNU/
Linux). However, voice communications, ubiquitous as they were, remained propri-
etary. Why? Perhaps it was because voice on the old public telephone network
lacked the glamor and promise of the shiny new World Wide Web. Or, perhaps it’s
because a telephone just isn’t as effective at supplying adult entertainment. What-
ever the reason, one thing was clear. Open source voice communications was about
as widespread as open source copy protection software.

Necessity (and in some cases simply being cheap) is truly the mother of invention. In
1999, having started Linux Support Services to offer free and commercial technical
support for Linux, I found myself in need (or at least in perceived need) of a phone
system to assist me in providing 24-hour technical support. The idea was that peo-
ple would be able to call in, enter their customer identity, and leave a message. The
system would in turn page a technician to respond to the customer’s request in short
order. Since I had started the company with about $4000 of capital, I was in no posi-
tion to be able to afford a phone system of the sort that I needed to implement this
scenario. Having already been a Linux user since 1994, and having already gotten my
feet wet in Open Source software development by starting l2tpd, gaim, and cheops,

,foreword.10522 Page ix Tuesday, August 30, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

x | Foreword

and in the complete absence of anyone having explained the complexity of such a
task, I decided that I would simply make my own phone system using hardware bor-
rowed from Adtran, where I had worked as a co-op student. Once I got a call into a
PC, I fantasized, I could do anything with it. In fact, it is from this conjecture that the
official Asterisk motto (which any sizable, effective project must have) is derived:

It’s only software!

For better or worse, I rarely think small. Right from the start, it was my intent that
Asterisk would do everything related to telephony. The name “Asterisk” was chosen
because it was both a key on a standard telephone and also the wildcard symbol in
Linux (e.g., rm -rf *).

So, in 1999, I have a free telephony platform I’ve put out on the web and I go about
my business trying to eke out a living at providing Linux technical support. How-
ever, by 2001, as the economy was tanking, it became apparent that Linux Support
Services might do better by pursuing Asterisk than general purpose Linux technical
support. That year, we would make contact with Jim “Dude” Dixon of the Zapata
Telephony project. Dude’s exciting work was a fantastic companion to Asterisk, and
provided a business model for us to start pursuing Asterisk with more focus. After
creating our first PCI telephony interface card in conjunction with Dude, it became
clear that “Linux Support Services” was not the best name for a telephony company,
and so we changed the name to “Digium,” which is a whole other story that cannot
be effectively conveyed in writing. Enter the expansion of Voice over IP (“VoIP”)
with its disruptive transition of voice from the old, circuit-switched networks to new
IP-based networks and things really started to take hold.

Now, as we’ve already covered, clearly most people don’t get very excited about tele-
phones. Certainly, few people could share my excitement the moment I heard dial-
tone coming from a phone connected to my PC. However, those who do get excited
about telephones get really excited about telephones. And facilitated by the Internet,
this small group of people were now able to unite and apply our bizarre passions to a
common, practical project for the betterment of many.

To say that telecom was ripe for an open source solution would be an immeasurable
understatement. Telecom is an enormous market due to the ubiquity of telephones
in work and personal life. The direct market for telecom products has a highly tech-
nical audience that is willing and able to contribute. People demand their telecom
solutions be infinitely customizable. Proprietary telecom is very expensive. Creating
Asterisk was simply the spark in this fuel rich backdrop.

Asterisk sits at the apex of a variety of transitions (Proprietary ➝ Open Source, Cir-
cuit Switched ➝ VoIP, Voice only ➝ Voice, Video, and Data, Digital Signal Process-
ing ➝ Host Media Processing, Centralized Directory ➝ Peer to Peer) while easing
those transitions by providing bridges back to the older ways of doing things. Aster-
isk can talk to anything from a 1960s era pulse dial phone to the latest wireless VoIP

,foreword.10522 Page x Tuesday, August 30, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Foreword | xi

devices, and provide features from simple tandem switching all the way to bluetooth
presence and DUNDi.

Most important of all, though, Asterisk demonstrates how a community of moti-
vated people and companies can work together to create a project with a scope so
significant that no one person or company could have possibly created it on its own.
In making Asterisk possible, I particularly would like to thank Linus Torvalds, Rich-
ard Stallman, the entire Asterisk community and whoever invented Red Bull.

So where is Asterisk going from here? Think about the history of the PC. When it
was first introduced in 1980, it had fairly limited capabilities. Maybe you could do a
spreadsheet, maybe do some word processing, but in the end, not much. Over time,
however, its open architecture led to price reductions and new products allowing it
to slowly expand its applications, eventually displacing the mini computer, then the
mainframe. Now, even Cray supercomputers are built using Linux-based x86 archi-
tectures. I anticipate that Asterisk’s future will look very similar. Today, there is a
large subset of telephony that is served by Asterisk. Tomorrow, who knows what the
limit might be.

So, what are you waiting for? Read, learn, and participate in the future of open tele-
communications by joining the Asterisk revolution!

—Mark Spencer

,foreword.10522 Page xi Tuesday, August 30, 2005 9:09 AM

,foreword.10522 Page xii Tuesday, August 30, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

xiii

Preface

This is a book for anyone who is new to Asterisk™.

Asterisk is an open source, converged telephony platform, which is designed prima-
rily to run on Linux. Asterisk combines over 100 years of telephony knowledge into a
robust suite of tightly integrated telecommunications applications. The power of
Asterisk lies in its customizable nature, complemented by unmatched standards-
compliance. No other PBX can be deployed in so many creative ways.

Applications such as voicemail, hosted conferencing, call queuing and agents, music
on hold, and call parking are all standard features built right into the software. More-
over, Asterisk can integrate with other business technologies in ways that closed,
proprietary PBXs can scarcely dream of.

Asterisk can appear quite daunting and complex to a new user, which is why docu-
mentation is so important to its growth. Documentation lowers the barrier to entry
and helps people contemplate the possibilities.

Produced with the generous support of O’Reilly Media, Asterisk: The Future of Tele-
phony was inspired by the work started by the Asterisk Documentation Project. We
have come a long way, and this book is the realization of a desire to deliver docu-
mentation which introduces the most fundamental elements of Asterisk-the things
someone new to Asterisk needs to know. It is the first volume in what we are certain
will become a huge library of knowledge relating to Asterisk.

This book was written for, and by, the Asterisk community.

Audience
This book is for those new to Asterisk, but we assume that you’re familiar with basic
Linux administration, networking, and other IT disciplines. If not, we encourage you
to explore the vast and wonderful library of books O’Reilly publishes on these sub-
jects. We also assume you’re fairly new to telecommunications, both traditional
switched telephony and the new world of voice over IP.

,ch00.19844 Page xiii Wednesday, August 31, 2005 4:53 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

xiv | Preface

Organization
The book is organized into these chapters:

Chapter 1, A Telephony Revolution
This is where we chop up the kindling, and light the fire. Asterisk is going to
change the world of telecom, and this is where we discuss our reasons for that
belief.

Chapter 2, Preparing a System for Asterisk
Covers some of the engineering considerations you should have in mind when
designing a telecommunications system. Much of this material can be skipped if
you want to get right to installing, but these are important concepts to under-
stand, should you ever plan on putting an Asterisk system into production.

Chapter 3, Installing Asterisk
Covers the obtaining, compiling and installation of Asterisk.

Chapter 4, Initial Configuration of Asterisk
Describes the initial configuration of Asterisk. Here we will cover the important
configuration files that must exist to define the channels and features available to
your system.

Chapter 5, Dialplan Basics
Introduces the heart of Asterisk, the dialplan.

Chapter 6, More Dialplan Concepts
Goes over some more advanced dialplan concepts.

Chapter 7, Understanding Telephony
Taking a break from Asterisk, this chapter discusses some of the more impor-
tant technologies in use in the Public Telephone Network.

Chapter 8, Protocols for VoIP
Following the discussion of legacy telephony, this chapter discusses Voice over IP.

Chapter 9, The Asterisk Gateway Interface (AGI)
Introduces one of the more amazing components, the Asterisk Gateway Inter-
face. Using Perl, PHP, and Python, we demonstrate how external programs can
be used to add nearly limitless functionality to your PBX.

Chapter 10, Asterisk for the Über-Geek
Briefly covers what is, in fact, a rich and varied cornucopia of incredible features
and functions; all part of the Asterisk phenomenon.

Chapter 11, Asterisk: The Future of Telephony
Predicts a future where open source telephony completely transforms an indus-
try desperately in need of a revolution.

,ch00.19844 Page xiv Wednesday, August 31, 2005 4:53 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Preface | xv

Software
This book is focused on documenting Asterisk Version 1.2, however many of the
conventions and information in this book are version-agnostic. Linux is the operat-
ing system we have run and tested Asterisk on, with a leaning towards Red Hat syn-
tax. We decided that while Red Hat-based distributions may not be the preferred
choice of everyone; its layout and utilities are nevertheless familiar to many experi-
enced Linux administrators.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, and Unix utilities.

Constant width
Indicates commands, options, parameters, and arguments that must be substi-
tuted into commands.

Constant width bold
Shows commands or other text that should be typed literally by the user. Also
used for emphasis in code.

Constant width italic
Shows text that should be replaced with user-supplied values.

[Keywords and other stuff]
Indicates optional keywords and arguments.

{ choice-1 | choice-2 }
Signifies either choice-1 or choice-2.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,

,ch00.19844 Page xv Wednesday, August 31, 2005 4:53 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

xvi | Preface

writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Asterisk: The Future of Telephony,
by Jim Van Meggelen, Jared Smith, and Leif Madsen. Copyright 2005 O’Reilly
Media, Inc., 0-596-00962-3.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Enabled
When you see a Safari® enabled icon on the cover of your favorite tech-
nology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/asterisk

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

,ch00.19844 Page xvi Wednesday, August 31, 2005 4:53 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Preface | xvii

Acknowledgments
Firstly, we have to thank our fantastic editor Michael Loukides, who offered invalu-
able feedback and found incredibly tactful ways to tell us to re-write a section (or
chapter) when it was needed, and have us think it was our idea. Mike built us up
when we were down, and brought us back to earth when we got uppity. You are a
master, Mike, and seeing how many books have received your editorial oversight
contributes to an understanding of why O’Reilly Media is the success it is.

Thanks also to Rachel Wheeler, our copy editor, Colleen Gorman, our production
editor, and the rest of the unsung heroes in O’Reilly’s production department. These
are the folks that take our book and make it an O’Reilly book.

Everyone in the Asterisk community needs to thank Jim Dixon for creating the first
open-source telephony hardware interfaces, starting the revolution, and giving his
creations to the community at large.

Thanks to Tim O’Reilly, for giving us a chance to write this book.

To our most generous and merciless review team:

• Rich Adamson, President of Network Partners Inc., for your encyclopedic
knowledge of the PSTN, and your tireless willingness to share your experience.
Your generosity, even in the face of daunting challenge, is inspiring to us all.

• Dr. Edward Guy, Chief Scientist, Pulver Innovations, for your comprehensive
and razor-sharp evaluation of each and every chapter, and for your championing
of Asterisk.

• Kristian Kielhofner, President, KrisCompanies and creator of AstLinux, for the
most excellent AstLinux distribution.

• Joel Sisko, Systems Integrator, for braving the fire.

• Travis Smith, for your valuable and timely feedback.

• Ted Wallingford, for leading the way with O’Reilly’s: Switching to VoIP.

• Brian K. West, for your commitment to the community, Asterisk, our book, and
open-source telephony.

• Joshua Colp, for putting up with, and answering, the numerous questions posed
by Leif.

• Robert M. Zigweid, not only for your thorough evaluation of our book (espe-
cially for slogging through the appendices), but also for having the coolest name
in the universe.

Anthony Minessale (a.k.a. anthm) is one of the unsung heroes of Asterisk develop-
ment. The number of people who have contributed to Asterisk development are
many; the number who can claim to have matched Anthony’s efforts are few.

,ch00.19844 Page xvii Wednesday, August 31, 2005 4:53 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

xviii | Preface

Finally, and most importantly, thanks go to Mark Spencer for GAIM, Asterisk and
DUNDi, and for contributing his creations to the open source community.

Leif Madsen
The road to this book is a long one—nearly three years in the making. Back when I
started using Asterisk, possibly much like you, I didn’t know anything about Aster-
isk, very little about traditional telephony and even less about voice over IP. I delved
right into this new and very exciting world and took in all I could. For two months
during a co-op term, for which I couldn’t immediately find work, I absorbed as much
as I could, asking questions, trying things and seeing what the system could do.
Unfortunately very little to no documentation existed for Asterisk aside from some
dialplan examples I was able to find by John Todd and having questions answered
by Brian K. West on IRC. Of course, this method wasn’t going to scale.

Not being much of a coder, I wanted to contribute something back to the commu-
nity, and what do coders hate doing more than anything? Documentation! So I
started The Asterisk Documentation Assignment (TADA), a basic outline with some
information for the beginnings of a book.

Shortly after releasing it on my website, an intelligent fellow calling himself Jared
Smith introduced himself. He had similar aspirations for creating a "dead-tree" for-
mat book for the community, and we humbly started the Asterisk Documentation
Project. Jared setup a simple web site at http://www.asteriskdocs.org, a CVS server
and the very first DocBook formatted version of a book for Asterisk. From there we
started filling in information, and soon had information submitted by a number of
members of the community.

In June of 2004, an animated chap by the name of Jim Van Meggelen started show-
ing up on the mailing lists, and contributing lots of information and documentation -
this was definitely a guy we wanted on our team! Jim had the vision and the drive to
really get Jared and my butts in gear and to work on something grander. Jim brought
us years of experience and a writing flair which we could hardly have imagined.

With the core documentation team established, we embarked on a plan for the cre-
ation of volumes of Asterisk knowledge, eventually to lead to a complete library and
wealth of information. This book is essentially the beginning of that dream.

Firstly and mostly, I have to thank my parents, Rick and Carol for always supporting
my efforts, allowing me to realize my dreams, and always putting my needs ahead of
theirs. Without their vision, understanding and insight into the future, it would have
been impossible to have accomplished what I have. I love you both very much!

I’d like to thank Felix Carapaica and Bill Farkas of the Sheridan Institute of Technol-
ogy for their dedication to the advancement of knowledge. Their teaching has com-
plemented my prior learning, and has allowed me to expand my understanding of
routing and telecommunications exponentially.

,ch00.19844 Page xviii Wednesday, August 31, 2005 4:53 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Preface | xix

There are far too many people to thank individually, but of particular importance,
the following people were, and are, the most influential to my understanding of
Asterisk:, Olle Johansson, Steven Sokol, Joshua Colp, Brian K. West, John Todd—
and William Suffill for my very first VoIP phone. And for those who I said I’d men-
tion in the book, thanks!

And of course, I must thank Jared Smith and Jim Van Meggelen for having the vision
and understanding of how important documentation really is—all of this would have
been impossible with you.

Jared Smith
I first started working with Asterisk in the spring of 2002. I had recently started a
new job with a market research company, and ended up taking a long road trip to a
remote call center with the CIO. On the long drive home we talked about innova-
tion in telephony, and he mentioned a little open-source telephony project he had
heard of called Asterisk. Over the next few months, I was able to talk the company
into buying a developers kit from Digium and start playing with Asterisk on com-
pany time.

Over the next few months, I became more and more involved with the Asterisk com-
munity. I read the mailing lists. I scoured the archives. I hung out in the IRC chan-
nel, just hoping to find nuggets of Asterisk knowledge. As time went on, I was finally
able to figure out enough to get Asterisk up and running.

That’s when the real fun began.

With the help of the CIO and the approval of the CEO, we moved forward with
plans to move our entire telecom infrastructure to Asterisk, including our corporate
office and all of our remote call centers. Along the way, we ran into a lot of
uncharted territory, and I began thinking about creating a good repository of Aster-
isk knowledge. Over the course of the project, we were able to do some really inno-
vative things, such as invent IAX trunking!

When all was said and done, we ended up with around forty Asterisk servers spread
across many different geographical locations, all communicating with each other to
provide a cohesive enterprise-class VoIP phone system. It currently handles approxi-
mately one million minutes of calls per month, serves several hundred employees,
connects to 27 voice T1s, and saves the company around $20,000 (USD) per month
on their telecom costs. In short, our Asterisk project was a resounding success!

While in the middle of implementing this project, I met Leif in one of the Asterisk
IRC channels. We talked about ways we could help out new Asterisk users and lower
the barrier to entry, and we decided to push ahead with plans to more fully docu-
ment Asterisk. I really wanted some good documentation in “dead-tree” format —
basically a book that a new user could pick up and learn the basics of Asterisk.
About that same time, the number of new users on the Asterisk mailing lists and in

,ch00.19844 Page xix Wednesday, August 31, 2005 4:53 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

xx | Preface

the IRC channels grew tremendously, and we felt that writing an Asterisk book
would greatly improve the signal-to-noise ratio. The Asterisk Documentation Project
was born! The rest, they say, is history.

Since then, we’ve been writing Asterisk documentation. I never thought it would be
this arduous, yet rewarding. (I joked with Leif and Jim that it might be easier and less
controversial to write an in-depth tome called “Religion, Gun Control, and Sushi”
than cover everything that Asterisk has to offer in sufficient detail!) What you see
here is a direct result of a lot of late nights and long weekends spent helping the
Asterisk community—after all, it’s the least we could do, considering what Asterisk
has given to us. We hope it will inspire other members of the Asterisk community to
help document changes and new features, for the benefit of all involved.

Now to thank some people:

First of all, I’d like to thank my beautiful wife. She’s put up with a lot of lonely nights
while I’ve been slaving away at the keyboard, and I’d like her to know how much I
appreciate her and her endless support. I’d also like to thank my kids for doing their
best to remind me of the important things in life. I love you!

To my parents: thanks for everything you’ve done to help me stretch and grow and
learn over the years. You’re the best parents a person could ask for.

To Dave Carr and Michael Lundberg: thanks for letting me learn Asterisk on com-
pany time. Working with both of you was truly a pleasure. May God smile upon you
and grant you success and joy in all you do.

To Leif and Jim: thanks for putting up with my stupid jokes, my insistence that we
do things “the right way,” and my crazy schedule. Thanks for pushing me along, and
making me a better writer. I’ve really enjoyed working with you two, and hope to
collaborate with you on future projects!

To Mark Spencer: thank you for your continued support and dedication and friend-
ship. You’ve been an invaluable resource to our effort, and I truly believe that you’ve
started a revolution in the world of telephony. You’re always welcome in my home
and at my dinner table!

To the other great people at Digium: thank you for your help and support. We’re espe-
cially thankful for you willingness to give us more insight into the Asterisk code, and
for donating hardware so that we can better document the Asterisk Developer’s Kit.

To Steven Sokol, Steven Critchfield, Olle E. Johansson, and all the others who have
contributed to the Asterisk Documentation Project and to this book: thank you! We
couldn’t have done it without your help and suggestions.

,ch00.19844 Page xx Wednesday, August 31, 2005 4:53 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxi

Jim Van Meggelen
For me, it all started in the spring of 2004, sitting at my desk in the technical sup-
port department of the telecom company I’d worked at for nearly fifteen years. With
no challenges worthy of my skills, I spent my time trying to figure out what I had
achieved in the last fifteen years. I was stuck in an industry that had squandered far
too many opportunities, and had as a result caused itself a spectacular and embar-
rassing fall from being the darling of investors to a joke known to even the most
uneducated. I was supposed to feel fortunate to be one of the few who still had work,
but what thankless, purposeless work it was. We knew why our industry had col-
lapsed: the products we sold could not hope to deliver the solutions our customers
required—even though the industry promised that they could. They lacked flexibil-
ity, and were priced totally out of step with the functionality they were delivering (or,
more to the point, were failing to deliver). Nowhere in the industry were there any
signs this was going to change any time soon.

I had been dreaming of an open-source PBX for many long years, but I really didn’t
know how such a thing could ever come to be—I’d given up on the idea several years
before. I knew that to be successful, an open source PBX would need to effectively
bridge the worlds of legacy and network-based telecom. I always failed to find any-
thing that seemed ready.

Then, one fine day in spring, I half-heartedly seeded a Google search with the phrase
“open source telephony,” and discovered a bright new future for telecom: Asterisk,
the Open Source Linux PBX.

There it was: the very thing I’d been dreaming of for so many years. The clouds
parted, the sun shone through; adventure lay ahead. I had no idea how I was going
to contribute, but I knew this: open-source telephony was going to cause a necessary
and beneficial revolution in the telecom industry; and one way or another, I was
going to be a part of it.

For me, more of a systems integrator than developer, I needed a way to contribute to
the community. There didn’t seem to be a shortage of developers, but there sure was
a shortage of documentation. This sounded like something I could do. I knew how
to write, I knew a thing or two about PBXs, and I desperately needed to talk about
this phenomenon that suddenly made telecom fun again.

If I contribute only one thing to this book, I hope you will catch some of my enthusi-
asm for the subject of open-source telephony. This is an incredible gift we have been
given, but also an incredible responsibility. What a wonderful challenge. What a cos-
mic opportunity. What delicious fun!

First of all, I need to thank Leif and Jared for inviting me to join the Asterisk Docu-
mentation Project. I have immensely enjoyed working with both of you, and I am
constantly amazed at how well our personalities and skills complement each other. A
truly balanced team, are we.

,ch00.19844 Page xxi Wednesday, August 31, 2005 4:53 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

xxii | Preface

To my wife Killi, and my children Kaara, Joonas, and Joosep (who always remember
to visit me when I disappear into my underground lair for too long): you are a source
of inspiration to me. Your love is the fuel that feeds my fire, and I thank you.

Obviously, I need to thank my parents Jack and Martiny, for always believing in me,
no matter how many rules I broke. In a few years, I’ll have my own teenagers, and
it’ll be your turn to laugh!

To Mark Spencer: thanks for all the things that everybody else thanks you for, but
also, personally, thanks for giving generously of your time to the Asterisk commu-
nity. The Toronto Asterisk Users’ Group (http://www.taug.ca) made a quantum leap
forward as a result of your taking the time to speak to us, and that event will forever
form a part of our history. Oh yeah, and thanks for the beers, too. :-)

Finally, thanks to the Asterisk Community. This book is our gift to you. We hope
you enjoy reading it as much as we’ve enjoyed writing it.

,ch00.19844 Page xxii Wednesday, August 31, 2005 4:53 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

1

Chapter 1 CHAPTER 1

A Telephony Revolution

It does not require a majority to prevail,
but rather an irate, tireless minority

keen to set brush fires in people’s minds.
—Samuel Adams

An incredible revolution is under way. It has been a long time in coming, but now
that it has started, there will be no stopping it. It is taking place in an area of technol-
ogy that has lapsed embarrassingly far behind every other industry that calls itself
high-tech. The industry is telecommunications, and the revolution is being fueled by
an open source Private Branch eXchange (PBX) called Asterisk™.

Telecommunications is arguably the last major electronics industry that has (until
now) remained untouched by the open source revolution. Major telecommunica-
tions manufacturers still build ridiculously expensive, incompatible systems, run-
ning complicated, ancient code on impressively engineered yet obsolete hardware.

As an example, Nortel’s Business Communications Manager kludges together a Win-
dows NT 4.0 server, a 15-year-old VXWorks-based Key Telephone Switch, and a
700-MHz PC. All this can be yours for between 5 and 15 thousand dollars, not
including telephones. If you want it to actually do anything interesting, you’ll have to
pay extra licensing fees for closed, limited-functionality, shrink-wrapped applica-
tions. Customization? Forget it—it’s not in the plan. Future technology and stan-
dards compliance? Give them a year or two—they’re working on it.

All of the major telecommunications manufacturers offer similar-minded products.
They don’t want you to have flexibility or choice; they want you to be locked in to
their product cycles.

Asterisk changes all that. With Asterisk, no one is telling you how your phone sys-
tem works, or what technology you are limited to. If you want it, you can have it.
Asterisk lovingly embraces the concept of standards compliance, while also enjoying
the freedom to develop its own innovations. What you choose to implement is up to
you-Asterisk imposes no limits.

,ch01.19973 Page 1 Wednesday, August 31, 2005 4:53 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

2 | Chapter 1: A Telephony Revolution

Naturally, this incredible flexibility comes with a price: Asterisk is not a simple sys-
tem to configure. This is not because it’s illogical, confusing, or cryptic; to the con-
trary, it is very sensible and practical. People’s eyes light up when they first see an
Asterisk dialplan and begin to contemplate the possibilities. But when there are liter-
ally thousands of ways to achieve a result, the process naturally requires extra effort.
Perhaps it can be compared to building a house: the components are relatively easy
to understand, but a person contemplating such a task must either a) enlist compe-
tent help or b) develop the required skills through instruction, practice, and a good
book on the subject.

VoIP: Bridging the Gap Between Traditional Telephony
and Network Telephony
While Voice over IP (VoIP) is often thought of as little more than a method of
obtaining free long-distance calling, the real value (and—let’s be honest—challenge
as well) of VoIP is that it allows voice to become nothing more than another applica-
tion in the data network.

It sometimes seems that we’ve forgotten that the purpose of the telephone is to allow
people to communicate. It is a simple goal, really, and it should be possible for us to
make it happen in far more flexible and creative ways than are currently available to
us. Since the industry has demonstrated an unwillingness to pursue this goal, a large
community of passionate people have taken on the task.

The challenge comes from the fact that an industry that has changed very little in the
last century shows little interest in starting now.

The Zapata Telephony Project
The Zapata Telephony Project was conceived of by Jim Dixon, a telecommunica-
tions consulting engineer who was inspired by the incredible advances in CPU
speeds that the computer industry has now come to take for granted. Dixon’s belief
was that far more economical telephony systems could be created if a card existed
that had nothing more on it than the basic electronic components required to inter-
face with a telephone circuit. Rather than having expensive components on the card,
Digital Signal Processing (DSP)* would be handled in the CPU by software. While
this would impose a tremendous load on the CPU, Dixon was certain that the low
cost of CPUs relative to their performance made them far more attractive than

* The term DSP also means Digital Signal Processor, which is a device (usually a chip) that is capable of inter-
preting and modifying signals of various sorts. In a voice network, DSPs are primarily responsible for encod-
ing, decoding, and transcoding audio information. This can require a lot of computational effort.

,ch01.19973 Page 2 Wednesday, August 31, 2005 4:53 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Massive Change Requires Flexible Technology | 3

expensive DSPs, and, more importantly, that this price/performance ratio would
continue to improve as CPUs continued to increase in power.

Like so many visionaries, Dixon believed that many others would see this opportu-
nity, and that he merely had to wait for someone else to create what to him was an
obvious improvement. After a few years, he noticed that not only had no one cre-
ated these cards, but it seemed unlikely that anyone was ever going to. At that point
it was clear that if he wanted a revolution, he was going to have to start it himself.
And so the Zapata Telephony Project was born.

Since this concept was so revolutionary, and was certain to make a lot of waves in the
industry, I decided on the Mexican revolutionary motif, and named the technology
and organization after the famous Mexican revolutionary Emiliano Zapata. I decided
to call the card the ‘tormenta’ which, in Spanish, means ‘storm,’ but contextually is
usually used to imply a big storm, like a hurricane or such.*

Perhaps we should be calling ourselves Asteristas. Regardless, we owe Jim Dixon a debt
of thanks, partly for thinking this up and partly for seeing it through, but mostly for giv-
ing the results of his efforts to the open source community. As a result of Jim’s contribu-
tion, Asterisk’s Public Switched Telephone Network (PSTN) engine came to be.

Massive Change Requires Flexible Technology
The most successful key telephone system in the world has a design limitation that
has survived 15 years of users begging for what appears to be a simple change: when
you determine the number of times your phone will ring before it forwards to voice-
mail, you can choose from 2, 3, 4, 6, or 10 ring cycles. Have you any idea how many
times people ask for five rings? Yet the manufacturers absolutely cannot get their
heads around the idea that this is a problem. That’s the way it works, they say, and
users need to get over it.

That’s just one example—the industry is rife with them.

Another example from the same system is that the name you program on your set
can only be seven characters in length. Back in the late 1980s, when this particular
system was built, RAM was pretty dear, and storing those seven characters for doz-
ens of sets represented a huge hardware expense. So what’s the excuse today? None.
Are there any plans to change it? Hardly—the issue is not even officially acknowl-
edged as a problem.

Now, it’s all very well and good to pick on one system, but the reality is that every PBX
in existence suffers shortcomings. No matter how fully featured it is, something will
always be left out, because even the most feature-rich PBX will always fail to anticipate

* Jim Dixon, “The History of Zapata Telephony and How It Relates to the Asterisk PBX” (http://www.
asteriskdocs.org/modules/tinycontent/index.php?id=10).

,ch01.19973 Page 3 Wednesday, August 31, 2005 4:53 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

4 | Chapter 1: A Telephony Revolution

the creativity of the customer. A small group of users will desire an odd little feature
that the design team either did not think of or could not justify the cost of building,
and, since the system is closed, the users will not be able to build it themselves.

If the Internet had been thusly hampered by regulation and commercial interests, it is
doubtful that it would have developed the wide acceptance it currently enjoys. The
openness of the Internet meant that anyone could afford to get involved. So, every-
one did. The tens of thousands of minds that collaborated on the creation of the
Internet delivered something that no corporation ever could have.

As with many other open source projects, such as Linux and the Internet, the explo-
sion of Asterisk was fueled by the dreams of folks who knew that there had to be
something more than what the industry was producing. The strength of the commu-
nity is that it is composed not of employees assigned to specific tasks, but rather of
folks from all sorts of industries, with all sorts of experiences, and all sorts of ideas
about what flexibility means, and what openness means. These people knew that if
one could take the best parts of various PBXs and separate them into interconnect-
ing components—akin to a boxful of LEGO bricks—one could begin to conceive of
things that would not survive a traditional corporate risk-analysis process. While no
one can seriously claim to have a complete picture of what this thing should look
like, there is no shortage of opinions and ideas.

Many people new to Asterisk see it as unfinished. Perhaps these people can be lik-
ened to visitors to an art studio, looking to obtain a signed, numbered print. They
often leave disappointed, because they discover that Asterisk is the blank canvas, the
tubes of paint, the unused brushes waiting.

Even at this early stage in its success, Asterisk is nurtured by a greater number of art-
ists than any other PBX. Most manufacturers dedicate no more than a few develop-
ers to any one product; Asterisk has scores. Most proprietary PBXs have a worldwide
support team comprised of a few dozen real experts; Asterisk has hundreds.

The depth and breadth of expertise that surrounds this product is unmatched in the
telecom industry. Asterisk enjoys the loving attention of old Telco guys who remem-
ber when rotary dial mattered, enterprise telecom people who recall when voicemail
was the hottest new technology, and data communications geeks and coders who
helped build the Internet. These people all share a common belief: that the telecom-
munications industry needs a proper revolution.*

Asterisk is the catalyst.

* The telecom industry has been predicting a revolution since before the crash; time will tell how well they
respond to the open source revolution.

,ch01.19973 Page 4 Wednesday, August 31, 2005 4:53 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Asterisk Community | 5

Asterisk: The Hacker’s PBX
Telecommunications companies who choose to ignore Asterisk do so at their peril.
The flexibility it delivers creates possibilities that the best proprietary systems can
scarcely dream of. This is because Asterisk is the ultimate hacker’s PBX.

If someone asks you not to use the term hacker, refuse. That term does not belong to
the mass media. They stole it and corrupted it to mean “malicious cracker.” It’s time
we took it back. Hackers built the networking engine that is the Internet. Hackers
built the Apple Macintosh and the Unix operating system. Hackers are also building
your next telecom system. Do not fear; these are the good guys, and they’ll be able to
build a system that’s far more secure than anything that exists today, because rather
than being constricted by the dubious and easily cracked security of closed systems,
they will be able to quickly respond to changing trends in security and fine-tune the
telephone system in response to both corporate policy and industry best practices.

Like other open source systems, Asterisk will be able to evolve into a far more secure
platform than any proprietary system, not in spite of its hacker roots, but rather
because of them.

Asterisk: The Professional’s PBX
Never in the history of telecommunications has a system so suited to the needs of
business been available, at any price. Asterisk is an enabling technology, and, as with
Linux, it will become increasingly rare to find an enterprise that is not running some
version of Asterisk, in some capacity, somewhere in the network, solving a problem
as only Asterisk can.

This acceptance is likely to happen much faster than it did with Linux, though, for
several reasons:

1. Linux has already blazed the trail that led to open source acceptance, so Aster-
isk can follow that lead.

2. The telecom industry is crippled, with no leadership being provided by the giant
industry players. Asterisk has a compelling, realistic, and exciting vision.

3. End users are fed up with incompatible, limited functionality, and horrible sup-
port. Asterisk solves the first two problems; the community has shown a pas-
sion for the latter.

The Asterisk Community
One of the compelling strengths of Asterisk is the passionate community that devel-
oped and supports it. This community, led by Mark Spencer of Digium, is keenly
aware of the cultural significance of Asterisk, and they are giddy about the future.

,ch01.19973 Page 5 Wednesday, August 31, 2005 4:53 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

6 | Chapter 1: A Telephony Revolution

One of the more powerful side effects caused by the energy of the Asterisk commu-
nity is the cooperation it has spawned among the telecommunications professionals,
networking professionals, and information technology professionals who share a
love for this phenomenon. While these professions have traditionally been at odds
with each other, in the Asterisk community they delight in each other’s skills. The
significance of this cooperation cannot be underestimated.

Still, if the dream of Asterisk is to be realized, the community must grow—yet one of
the key challenges the community currently faces is a rapid influx of new users. The
members of the existing community, having birthed this thing called Asterisk, are
generally welcoming of new users, but they’ve grown impatient with being asked the
kinds of questions whose answers can often be obtained independently, if one is will-
ing to put forth the time needed to research and experiment.

Obviously, new users do not fit any particular kind of mold. While some will hap-
pily spend hours experimenting and reading various blogs describing the trials and
tribulations of others, many people who have become enthusiastic about this tech-
nology are completely uninterested in such pursuits. They want a simple, straightfor-
ward, step-by-step guide that’ll get them up and running, followed by some sensible
examples describing the best methods of implementing common functionality (such
as voicemail, auto attendants, and the like).

To the members of the expert community, who (correctly) perceive that Asterisk is
like a programming language, this approach doesn’t make any sense. To them, it’s
clear that you have to immerse yourself in Asterisk to appreciate its subtleties.
Would one ask for a step-by-step guide to programming and expect to learn from it
all that a language has to offer?

Clearly, there’s no one approach that’s right for everyone. Asterisk is a different animal
altogether, and it requires a totally different mindset. As you explore the community,
though, be aware that there are people with many different skill sets and attitudes here.
Some of these folks do not display much patience with new users, but that’s often due
to their passion for the subject, not because they don’t welcome your participation.

The Asterisk Mailing Lists
As with any community, there are places where members of the Asterisk community
meet to discuss matters of mutual interest. Of the mailing lists you will find at http://
lists.digium.com, these three are currently the most important:

Asterisk-Biz
Anything commercial with respect to Asterisk belongs in this list. If you’re sell-
ing something Asterisk-related, sell it here. If you want to buy an Asterisk ser-
vice or product, post here.

Asterisk-Dev
The Asterisk developers hang out here. The purpose of this list is the discussion
of the development of the software that is Asterisk, and its participants

,ch01.19973 Page 6 Wednesday, August 31, 2005 4:53 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Business Case | 7

vigorously defend that purpose. Expect a lot of heat if you post anything to this
list not relating to programming or development.

Asterisk-Users
This is where most Asterisk users hang out. This list generates several hundred
messages per day and has over ten thousand subscribers. While you can go here
for help, you are expected to have done some reading on your own before you
post a query.

The Asterisk Wiki
The Asterisk Wiki is a source of much enlightenment and confusion. A community-
maintained repository of VoIP knowledge, http://www.voip-info.org contains a truly
inspiring mess of fascinating, informative, and frequently contradictory information
about many subjects, just one of which is Asterisk.

Since Asterisk documentation forms by far the bulk of the information on this web
site, and it probably contains more Asterisk knowledge than all other sources put
together (with the exception of the mailing-list archives), it is commonly referred to
as the place to go for Asterisk knowledge.

The IRC Channels
The Asterisk community maintains Internet Relay Chat channels on irc.freenode.net.
The two most active are #Asterisk and #Asterisk-Dev. To cut down on spam-bot
intrusions, both of these channels now require registration to join.

The Asterisk Documentation Project
The Asterisk Documentation Project was started by Leif Madsen and Jared Smith.
Many people in the community have contributed.

The goal of the documentation project is to provide a structured repository of writ-
ten work on Asterisk. In contrast with the flexible and ad hoc nature of the Wiki, the
Docs project is passionate about building a more focused approach to various Aster-
isk-related subjects.

As part of the efforts of the Asterisk Docs project to make documentation available
online, this book is available at the http://www.asteriskdocs.org web site, under a Cre-
ative Commons license.

The Business Case
It is very rare to find businesses these days that do not have to reinvent themselves
every few years. It is equally rare to find a business that can afford to replace its

,ch01.19973 Page 7 Wednesday, August 31, 2005 4:53 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

8 | Chapter 1: A Telephony Revolution

communications infrastructure each time it goes in a new direction. Today’s busi-
nesses need extreme flexibility in all of their technology, including telecom.

In his book Crossing the Chasm (HarperBusiness), Geoffrey Moore opines, “The idea
that the value of the system will be discovered rather than known at the time of
installation implies, in turn, that product flexibility and adaptability, as well as ongo-
ing account service, should be critical components of any buyer’s evaluation check-
list.” What this means, in part, is that the true value of a technology is often not
known until it has been deployed.

How compelling, then, to have a system that holds at its very heart the concept of
openness and the value of continuous innovation.

This Book
So where to begin? Well, when it comes to Asterisk, there is far more to talk about
than we can fit into one book. For now, we’re not going to take you down all the
roads that the über-geeks follow—we’re just going to give you the basics.

In Chapter 1, we cover some of the engineering considerations you should have in
mind when designing a telecommunications system. You can skip much of this mate-
rial if you want to get right to installing, but these are important concepts to under-
stand, should you ever plan on putting an Asterisk system into production.

Chapter 2 covers obtaining, compiling, and installing Asterisk, and Chapter 3 deals
with the initial configuration of Asterisk. Here we cover the important configuration
files that must exist to define the channels and features available to your system. This
will prepare you for Chapter 4, where we introduce the heart of Asterisk, the dial-
plan. Having covered dialplan basics, Chapter 5 introduces some more advanced
dialplan concepts.

We will take a break from Asterisk in Chapter 6, and discuss some of the more
important technologies in use in the PSTN. Naturally, following the discussion of
legacy telephony, Chapter 7 discusses Voice over IP.

Chapter 8 introduces one of the more amazing components, the Asterisk Gateway
Interface (AGI). Using Perl, PHP, and Python, we demonstrate how external pro-
grams can be used to add nearly limitless functionality to your PBX. In Chapter 9, we
briefly cover what is, in fact, a rich and varied cornucopia of incredible features and
functions, all of which are part of the Asterisk phenomenon. To conclude, Chapter
10 looks forward, predicting a future where open source telephony completely trans-
forms an industry desperately in need of a revolution. You’ll also find a wealth of ref-
erence information in the book’s five appendixes.

This book can only lay down the basics, but from this foundation, you will be able to
come to an understanding of the concept of Asterisk—and from that, who knows
what you will build?

,ch01.19973 Page 8 Wednesday, August 31, 2005 4:53 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

9

Chapter 2 CHAPTER 2

Preparing a System for Asterisk

Very early on, I knew that someday in some “perfect”
future out there over the horizon, it would be

commonplace for computers to handle all of the
necessary processing functionality internally,

making the necessary external hardware to connect up
to telecom interfaces VERY inexpensive

and in some cases trivial.
—Jim Dixon, “The History of Zapata Telephony and

How It Relates to the Asterisk PBX”

By this point, you must be anxious to get your Asterisk system up and running. If
you are building a hobby system, you can probably jump right to the next chapter
and begin the installation. For a mission-critical deployment, however, some thought
must be given to the environment in which the Asterisk system will run. Make no
mistake: Asterisk, being a very flexible piece of software, will happily and success-
fully install on nearly any Linux platform you can conceive of, and several non-Linux
platforms as well.* However, to arm you with an understanding of the type of operat-
ing environment Asterisk will really thrive in, this chapter will discuss issues you
need to be aware of in order to deliver a reliable, well-designed system.

In terms of its resource requirements, Asterisk’s needs are similar to those of an
embedded, real-time application. This is due in large part to its need to have priority
access to the processor and system buses. It is therefore imperative that any func-
tions on the system not directly related to the call-processing tasks of Asterisk be run
at a low priority, if at all. On smaller systems and hobby systems, this might not be
as much of an issue. However, on high-capacity systems, performance shortcomings
will manifest as audio quality problems for users, often experienced as echo, static,

* People have successfully compiled and run Asterisk on WRAP boards, Linksys WRT54G routers, Soekris
systems, Pentium 100s, PDAs, Apple Macs, Sun SPARCs, laptops, and more. Of course, whether you would
want to put such a system into production is another matter entirely. (Actually, the AstLinux distribution,
by Kristian Kielhofner, runs very well indeed on the Soekris 4801 board. Once you’ve grasped the basics of
Asterisk, this is something worth looking into further. Check out http://www.astlinux.org.)

,ch02.20169 Page 9 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

10 | Chapter 2: Preparing a System for Asterisk

and the like. The symptoms will resemble those experienced on a cell phone when
going out of range, although the underlying causes will be different. As loads
increase, the system will have increasing difficulty maintaining connections. For a
PBX, such a situation is nothing short of disastrous, so careful attention to perfor-
mance requirements is a critical consideration during the platform selection process.

Table 2-1 lists some very basic guidelines that you’ll want to keep in mind when
planning your system. The next section takes a close look at the various design and
implementation issues that will affect its performance.

With large Asterisk installations, it is common to deploy functionality across several
servers. One or more central units will be dedicated to call processing; these will be
complemented by one or more ancillary servers handling peripherals (such as a data-
base, voicemail, conferencing, management, a web interface, a firewall, and so on).
As is true in most Linux environments, Asterisk is well suited to growing with your
needs: a small system that used to be able to handle all your call-processing and
peripheral tasks can be distributed between several servers when increased demands
exceed its abilities. Flexibility is a key reason why Asterisk is extremely cost-effective
for rapidly growing businesses—there is no effective maximum or minimum size to
consider when budgeting the initial purchase. While some scalability is possible with
most telephone systems, we have yet to hear of one that can scale as inexpensively as
Asterisk. Having said that, distributed Asterisk systems are not simple to design—
this is not a task for someone new to Asterisk.*

Server Hardware Selection
The selection of a server is both simple and complicated: simple because, really, any
x86-based platform will suffice; but complicated because the reliable performance of
your system will depend on the care that is put into the platform design. When

Table 2-1. System requirement guidelines

Purpose Number of channels Minimum recommended

Hobby system No more than 5 400-MHz x86, 256 MB RAM

SOHOa system

a Small Office/home Office—less than three lines and five sets.

5 to 10 1-GHz x86, 512 MB RAM

Small business system Up to 15 3-GHz x86, 1 GB RAM

Medium to large system More than 15 Dual CPUs, possibly also multiple servers
in a distributed architecture

* If you are sure that you need to set up a distributed Asterisk system, you will want to study the DUNDi pro-
tocol. You should probably get the interest of the Asterisk-Users mailing list as well, but be sure to wear your
flame-retardant suit; for some reason, this subject can spur a heated (but generally very educational) debate.

,ch02.20169 Page 10 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Server Hardware Selection | 11

selecting your hardware, you must carefully consider the overall design of your sys-
tem and what functionality you need to support. This will help you determine your
requirements for the CPU, motherboard, and power supply. If you are simply setting
up your first Asterisk system for the purpose of learning, you can safely ignore the
information in this section. If, however, you are building a mission-critical system
suitable for deployment, these are issues that require some thought.

Performance Issues
Among other considerations, when selecting the hardware for an Asterisk installa-
tion you must bear in mind this critical question: how powerful must the system be?
This is not an easy question to answer, because the manner in which the system is to
be used will play a big role in the resources it will consume. There is no such thing as
an Asterisk performance-engineering matrix, so you will need to understand how
Asterisk uses the system in order to make intelligent decisions about what kinds of
resources will be required. You will need to consider several factors, including:

The maximum number of concurrent connections the system will be expected to support
Each connection will increase the workload on the system.

The percentage of traffic that will require processor-intensive Digital Signal Processing
(DSP) of compressed codecs (such as G.729 and GSM)*

The DSP work that Asterisk performs in software can have a staggering impact
on the number of concurrent calls it will support. A system that can happily han-
dle 50 concurrent G.711 calls can be brought to its knees by a request to confer-
ence together 10 G.729 compressed channels.

Whether conferencing will be provided, and what level of conferencing activity is expected
Will the system be used heavily? Conferencing requires the system to transcode and
mix each individual incoming audio stream into multiple outgoing streams. Mixing
multiple audio streams in near-real-time can place an enormous load on the CPU.

Echo cancellation†

Echo cancellation may be required on any calls where a Public Switched Tele-
phone Network (PSTN) interface is involved. Since echo cancellation is a mathe-
matical function—the more of it the system has to perform, the higher the load
on the CPU will be.

Dialplan scripting logic
Whenever Asterisk has to pass call control to an external program, there is a per-
formance penalty. As much logic as possible should be built into the dialplan. If
external scripts are used, they should be designed with performance and effi-
ciency as important goals.

* We’ll talk more about G.729, GSM, G.711, and many other codecs in Chapter 8.

† Do not fear. Echo cancellation is another topic for Chapter 8.

,ch02.20169 Page 11 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

12 | Chapter 2: Preparing a System for Asterisk

As for the exact performance impact of these factors, the jury’s still out. The effect of
each is known in general terms, but an accurate performance calculator has not yet
been successfully defined. This is partly because the effect of each component of the
system is dependent on numerous variables, such as CPU power, motherboard
chipset and overall quality, total traffic load on the system, Linux kernel optimiza-
tions, network traffic, number and type of PSTN interfaces, and PSTN traffic—not
to mention any non-Asterisk services the system is performing concurrently. Let’s
take a look at the effects of several key factors:

Codecs and transcoding
Simply put, a codec (short for coder/decoder or compression/decompression) is a
set of mathematical rules that define how an analog waveform will be digitized.
The differences between the various codecs are due in large part to the levels of
compression and quality that they offer. Generally speaking, the more compres-
sion that’s required, the more work the DSP must do to code or decode the sig-
nal. Uncompressed codecs, therefore, put far less strain on the CPU (but require
more network bandwidth). Codec selection must strike a balance between band-
width and processor usage.

Central Processing Unit (and Floating Point Unit)
A CPU is comprised of several components, one of which is the Floating Point
Unit (FPU). The speed of the CPU, coupled with the efficiency of its FPU, will
play a significant role in the number of users a system can effectively support.
The next section, “Choosing a Processor,” offers guidelines for choosing a CPU
that will meet the needs of your system.

Other processes running concurrently on the system
Being Unix-like, Linux is designed to be able to multitask several different pro-
cesses. A problem arises when one of those processes (such as Asterisk) demands
a very high level of responsiveness from the system. By default, Linux will
equally distribute resources amongst every application that requests them. If you
install a system with many different server applications, those applications will
each be allowed their fair use of the CPU. Since Asterisk requires frequent high-
priority access to the CPU, it does not get along well with other applications,
and if Asterisk must coexist with other apps, the system may require special
optimizations. This primarily involves the assignment of priorities to various
applications in the system, and, during installation, careful attention to which
applications are installed as services.

Kernel optimizations
A kernel optimized for the performance of one specific application is something
that very few Linux distributions offer by default, and thus it requires some
thought. At the very minimum—whichever distribution you choose—a fresh
copy of the Linux kernel (available from http://www.kernel.org) should be down-
loaded and compiled on your platform. You may also be able to acquire patches

,ch02.20169 Page 12 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Server Hardware Selection | 13

that will yield performance improvements, but these are considered hacks to the
officially supported kernel.

IRQ latency
Interrupt request (IRQ) latency is basically the delay between the moment a
peripheral card (such as a telephone interface card) requests that the CPU stop
what it’s doing and the moment when the CPU actually responds and is ready to
handle the task. Asterisk’s peripherals (especially the Zaptel cards) are extremely
intolerant of IRQ latency.

Linux has historically had problems with its ability to service IRQs
quickly; this problem has caused enough trouble for audio developers
that several patches have been created to address this shortcoming. So
far, there has been some mild controversy over how to incorporate
these patches into the Linux kernel.

Because the Digium cards require so much, it is generally recommended that
only one Digium card be run in a system. If you require more connectivity than a
single card can provide, either replace your existing card with one of higher den-
sity, or add another server to your environment.*

Kernel version
Asterisk is officially supported on Linux Version 2.6.

Linux distribution
Linux distributions are many and varied. In the next chapter, we will discuss the
challenge of selecting a Linux distribution, and how to obtain and install both
Linux and Asterisk.

Choosing a Processor
Since the performance demands of Asterisk will generally involve a large number of
math calculations, it is essential that you select a processor with a powerful FPU. The
signal processing that Asterisk performs can quickly demand a staggering quantity of
complex mathematical computations from the CPU. The efficiency with which these
tasks are carried out will be determined by the power of the FPU within that processor.

To actually name a best processor for Asterisk would fly in the face of the rapid
advances in the computer industry. Even in the time between the authoring and pub-
lishing of this book, processor speeds will undergo rapid improvements, as will
Asterisk’s support for various architectures. Obviously, this is a good thing, but it
also makes the giving of advice on the topic a thankless task. Naturally, the more

* Many people report that Sangoma cards are more robust when it comes to dealing with unpredictable mother-
board chipsets, and thus can handle sharing motherboard IRQ resources. Regardless, it is still worth consider-
ing using multiple servers, as the redundancy that can be gained from this strategy can quickly offset the cost.

,ch02.20169 Page 13 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

14 | Chapter 2: Preparing a System for Asterisk

powerful the FPU is, the more concurrent DSP tasks Asterisk will be able to handle,
so that is the ultimate consideration. When you are selecting a processor, the raw
clock speed is only part of the equation. How well it handles floating-point opera-
tions will be a key differentiator, as DSP operations in Asterisk will place a large
demand on it.

Both Intel and AMD CPUs have powerful FPUs. As of this writing, the Intel chips are
commonly preferred for 32-bit systems, while AMD gets the nod if you’re going to
64-bit. When you read this book, that may no longer be true.*

The obvious conclusion is that you should get the most powerful CPU your budget
will allow. However, don’t be too quick to buy the most expensive CPU out there.
You’ll need to keep the requirements of your system in mind—after all, a Formula 1
Ferrari is ill-suited to the rigors of rush-hour traffic.

In order to attempt to provide a frame of reference from which we can contemplate
our platform decision, we have chosen to define three sizes of Asterisk systems:
small, medium, and large.

Small systems

Small systems (up to 10 phones) are not immune to the performance requirements of
Asterisk, but the typical load that will be placed on a smaller system will generally
fall within the capabilities of a modern processor.

If you are building a small system from older components you have lying around, be
aware that the resulting system cannot be expected to perform at the same level as a
more powerful machine, and will run into performance degradation under a much
lighter load. Hobby systems can be run successfully on very low-powered hard-
ware,† although this is by no means recommended for anyone who is not a whiz at
Linux performance tuning.

If you are setting up an Asterisk system for the purposes of learning, you will be able
to build a fully featured platform using a relatively low-powered CPU. The authors
run several Asterisk lab systems with 433-MHz to 700-MHz Celeron processors; the
workload of these systems is typically minimal.

* If you want to be completely up to the minute on which CPUs are leading the performance race, surf on over
to Tom’s Hardware (http://www.tomshardware.com) or AnandTech (http://www.anandtech.com), where you
will find a wealth of information about both current and out-of-date CPUs, motherboards, and chipsets.

† A 133-MHz Pentium system is known to be running Asterisk, but performance problems are likely, and
properly configuring such a system requires an expert knowledge of Linux. We do not recommend running
Asterisk on anything less than a 500-MHz system (for a production system, 2 GHz might be a sensible min-
imum), but we think the fact that Asterisk is so flexible is remarkable.

,ch02.20169 Page 14 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Server Hardware Selection | 15

Medium systems

Medium-sized systems (from 10 to 50 phones) are where performance consider-
ations will be the most challenging to resolve. Generally, these systems will be
deployed on one or two servers only, and thus each machine will be required to han-
dle more than one specific task. As loads increase, the limits of the platform will
become increasingly stressed. Users may begin to perceive quality problems without
realizing that the system is not faulty in any way, but simply exceeding its capacity.
These problems will get progressively worse as more and more load is placed on the
system, with the user experience degrading accordingly. It is critical that perfor-
mance problems be identified and addressed before they are noticed by users.

Monitoring performance on these systems and quickly acting on any developing
trends is a key to ensuring that a quality telephony platform is provided.

Large systems

Large systems (over 50 users) can be distributed across multiple cores, and thus per-
formance concerns can be managed through the addition of machines. Very large
Asterisk systems—from 500 to over 1,000 users—have been created in this way.
Building a large system requires an advanced level of knowledge in many different
disciplines. We will not discuss it in detail in this book, other than to say that the
issues you’ll encounter will be similar to those encountered during any deployment
of multiple servers handling a single, distributed task.

Choosing a Motherboard
Just to get any anticipation out of the way, we also cannot recommend specific
motherboards in this book. With new motherboards coming out on a weekly basis,
any recommendations we made would be rendered moot by obsolescence before the
published copy hit the shelves. Not only that, but motherboards are like automo-
biles: while they are all very similar in principle, the difference is in the details. And
as Asterisk is a performance application, the details matter.

What we will do, therefore, is give you some idea of the kinds of motherboards that
can be expected to work well with Asterisk, and the features that will make for a
good motherboard. The key is to have both stability and high performance. Here are
some guidelines to follow:

• The various system buses must provide the minimum possible latency. If you are
planning a PSTN connection using analog or PRI interfaces (discussed later in
this chapter), the Digium Zaptel cards will generate 1,000 interrupt requests per
second. Having devices on the bus that interfere with this process will result in
degradation of call quality. Chipsets from Intel (for Intel CPUs) and nVidia
nForce (for AMD CPUs) seem to score the best marks in this area. Review the

,ch02.20169 Page 15 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

16 | Chapter 2: Preparing a System for Asterisk

specific chipset of any motherboard you are evaluating to ensure that it does not
have known problems with IRQ latency.

• If you are running Zaptel cards in your system, you will want to ensure that your
BIOS allows you maximum control over IRQ assignment. As a rule, high-end
motherboards will offer far greater flexibility with respect to BIOS tweaking;
value-priced boards will generally offer very little control. This may be a moot
point, however, as APIC-enabled motherboards turn IRQ control over to the
operating system.

• Server-class motherboards generally implement a different PCI standard than
workstation-class motherboards. While there are many differences, the most
obvious and well known is that the two versions have different voltages.
Depending on which cards you purchase, you will need to know if you require
3.3V or 5V PCI slots. Figure 2-1 shows the difference between 3.3V and 5V slots.
Most server motherboards will have both types, but workstations will typically
have only the 5V version.

• Consider using multiple processors. This will provide an improvement in the
system’s ability to handle multiple tasks. For Asterisk, this will be of special ben-
efit in the area of floating-point operations.

It should be noted that evidence now suggests that connecting
together two completely separate, single-CPU systems may provide far
more benefits than simply using two processors in the same machine.
You not only double your CPU power, but you also achieve a much
better level of redundancy at a similar cost to a single-chassis, dual-
CPU machine. Keep in mind, though, that a dual-server Asterisk solu-
tion will be more complex to design than a single-machine solution.

Figure 2-1. Visual identification of PCI slots

3.3V 32-bit

5V 32-bit

3.3V 64-bit

5V 64-bit

,ch02.20169 Page 16 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Server Hardware Selection | 17

• Avoid motherboards that include built-in audio and video components. If you
want a sound card, install one. As for a video card, you may not need one at
all—certainly Asterisk does not require one. It has traditionally been the more
value-priced motherboards that have had these components on-board, and these
board designs often make compromises to keep down the costs.

• If possible, install an external modem. If you must have an internal modem, you
will need to ensure that it is not a so-called “Win-modem”—it must be a com-
pletely self-sufficient unit (note that these are very difficult, if not impossible, to
find).

• Consider that with built-in networking, if you have a network component fail-
ure, the entire motherboard will need to be replaced. On the other hand, if you
install a peripheral Network Interface Card (NIC), there may be an increased
chance of failure due to the extra mechanical connections involved. Some value
can probably be gained from having both primary and backup cards installed in
the system.

• The stability and quality of your Asterisk system will be dependent on the com-
ponents you select for its architecture. Asterisk is a beast, and it expects to be fed
the best. As with just about anything, high cost is not always synonymous with
quality, but you will want to become a connoisseur of computer components.

Having said all that, we need to get back to the original point: Asterisk can and will
happily install on pretty nearly any PC platform. The lab systems used to write this
book, for example, included everything from a 433-MHz Pentium III on an Intel
chipset to an Athlon XP 2000 on a VIA-based motherboard. We have not experi-
enced any performance or stability problems running less than five concurrent tele-
phone connections. For the purposes of learning, do not be afraid to install Asterisk
on whatever system you can scrounge up. When you are ready to put your system
into production, however, you will need to understand the ramifications of the
choices you make with respect to your hardware.

Power Supply Requirements
One often-overlooked component in a PC is the power supply (and the supply of
power). For a telecommunications system, these components can play a significant
role in the quality of the user experience.

Computer power supplies

The power supply you select for your system will play a vital role in the stability of
the entire platform. Asterisk is not a particularly power-hungry application, but any-
thing relating to multimedia (whether it be telephony, professional audio, video, or
the like) is generally sensitive to power quality.

,ch02.20169 Page 17 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

18 | Chapter 2: Preparing a System for Asterisk

This oft-neglected component can turn an otherwise top-quality system into a poor
performer. By the same token, a top-notch power supply might enable an otherwise
cheap PC to perform like a champ.

The power supplied to a system must provide not only the energy the system needs
to perform its tasks, but also stable, clean signal lines for all of the voltages your sys-
tem expects from it.

Redundant power supplies

In a carrier-grade or high-availability environment, it is common to deploy servers
that use a redundant power supply. Essentially, this involves two completely inde-
pendent power supplies, either one of which is capable of supplying the power
requirements of the system.

If this is important to you, keep in mind that best practices suggest that to be prop-
erly redundant, these power supplies should be connected to completely indepen-
dent Uninterruptible Power Supplies (UPSs) that are in turn fed by totally isolated
electrical circuits.

Environment
Your system’s environment consists of all those factors that are not actually part of
the server itself, but nevertheless play a crucial role in the reliability and quality that
can be expected from the system. Electrical supplies, room temperature and humid-
ity, sources of interference, and security are all factors that should be contemplated.

Power Conditioning and Uninterruptible Power Supplies
When selecting the power sources for your system, consideration should be given
not only to the amount of power the system will use, but also to the manner in which
that power is delivered.

Power is not as simple as voltage coming from the outlet in the wall, and you should
never just plug a production system into whatever electrical source is near at hand.*

Giving some consideration to the supply of power to your system can provide a far
more stable power environment, leading to a far more stable system.

* Okay, look, you can plug it in wherever you’d like, and it’ll probably work, but if your system has strange
stability problems, please give this section another read. Deal?

,ch02.20169 Page 18 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Environment | 19

Properly grounded, conditioned power feeding a premium-quality power supply will
ensure a clean logic ground (a.k.a. 0-volt) reference* for the system and keep electri-
cal noise on the motherboard to a minimum. These are industry-standard best
practices for this type of equipment, which should not be neglected. A relatively sim-
ple way to achieve this is through the use of a power-conditioned UPS.†

Power-conditioned UPSs

The UPS is well known for its role as a battery backup, but the power-conditioning
benefits that high-end UPS units also provide are less well understood.

Power conditioning can provide a valuable level of protection from the electrical
environment by regenerating clean power through an isolation transformer. A qual-
ity power conditioner in your UPS will eliminate most electrical noise from the
power feed and help to ensure a rock-steady supply of power to your system.

Unfortunately, not all UPS units are created equal; many of the less expensive units
do not provide clean power. What’s worse, manufacturers of these devices will often
promise all kinds of protection from surges, spikes, overvoltages, and transients.
While such devices may protect your system from getting fried in an electrical storm,
they will not clean up the power being fed to your system, and thus will do nothing
to contribute to stability.

Make sure your UPS is power conditioned. If it doesn’t say exactly that, it isn’t.

Grounding
Voltage is defined as the difference in electrical potential between two points. When
considering a ground (which is basically nothing more than an electrical path to
earth), the common assumption is that it represents 0 volts. But if we do not define
that 0V in relation to something, we are in danger of assuming things that may not
be so. If you measure the voltage between two grounding references, you’ll often find
that there is a voltage potential between them. This voltage potential between
grounding points can be significant enough to cause logic errors—or even damage—
in a system where more than one path to ground is present.

* In electronic devices, a binary zero (0) is generally related to a 0-volt signal, while a binary one (1) can be
represented by many different voltages (commonly between 2.5 and 5 volts). The grounding reference that
the system will consider 0 volts is often referred to as the “logic ground.” A poorly grounded system might
have electrical potential on the logic ground to such a degree that the electronics mistake a binary zero for a
binary one. This can wreak havoc with the system’s ability to process instructions.

† It is a commonly misunderstood belief that all UPSs provide clean power. This is not at all true.

,ch02.20169 Page 19 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

20 | Chapter 2: Preparing a System for Asterisk

One of the authors recalls once frying a sound card he was trying to
connect to a friend’s stereo system—even though both the computer
and the stereo were in the same room, more than 6 volts of difference
was measured between the ground conductors of the two electrical
outlets they were plugged into! The wire between the stereo and the
PC (by way of the sound card) provided a path that the voltage eagerly
followed, thus frying a sound card that was not expecting an electrical
current on its signal leads. Connecting both the PC and the stereo to
the same outlet fixed the problem.

When considering electrical regulations, the purpose of a ground is primarily human
safety. In a computer, the ground is used as a 0V logic reference. An electrical sys-
tem that provides proper safety will not always provide a proper logic reference—in
fact, the goals of safety and power quality are sometimes in disagreement. Naturally,
when a choice must be made, safety has to take precedence.

Since the difference between a binary zero and a binary one is repre-
sented in computers by voltage differences of sometimes less than 3V,
it is entirely possible for unstable power conditions caused by poor
grounding or electrical noise to cause all manner of intermittent sys-
tem problems. Some power and grounding advocates estimate that
more than 80% of unexplained computer glitches can be traced to
power quality.

Modern switching power supplies are somewhat isolated from power quality issues,
but any high-performance system will always benefit from a well-designed power
environment. In mainframes, proprietary PBXs, and other expensive computing plat-
forms, the grounding of the system is never left to chance. The electronics and
frames of these systems are always provided with a dedicated ground that does not
depend on the safety grounds supplied with the electrical feed.

Regardless of how much you are willing to invest in grounding, when you specify the
electrical supply to any PBX, ensure that the electrical circuit is completely dedicated
to your system (as discussed in the next section) and that an insulated, isolated
grounding conductor is provided. This can be expensive to provision, but it will con-
tribute greatly to a quality power environment for your system.*

It is also vital that each and every peripheral you connect to your system be con-
nected to the same electrical receptacle (or, more specifically, the same ground refer-
ence). This will cut down on the occurrence of ground loops, which can cause
anything from buzzing and humming noises to damaged or destroyed equipment.

* On a hobby system, this is probably too much to ask, but if you are planning on using Asterisk for anything
important, at least be sure to give it a fighting chance—don’t put anything like air conditioners, photocopi-
ers, laser printers, or motors on the same circuit.

,ch02.20169 Page 20 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Environment | 21

Electrical Circuits
If you’ve ever seen the lights dim when an electrical appliance kicks in, you’ve seen
the effect that a high-energy device can have on an electrical circuit. If you were to
look at the effects of a multitude of such devices, each drawing power in its own
way, you would see that the harmonically perfect 50- or 60-Hz sine wave you may
think you’re getting with your power is anything but. Harmonic noise is extremely
common on electrical circuits, and it can wreak havoc on sensitive electronic equip-
ment. For a PBX, these problems can manifest as audio problems, logic errors, and
system instability.

Never install a server on an electrical circuit that is shared with any other devices.
There should be only one outlet on the circuit, and you should connect only your
telephone system (and associated peripherals) to it. The wire (including the ground)
should be run unbroken directly back to the electrical panel. The grounding conduc-
tor should be insulated, and isolated. There are far too many stories of photocopiers,
air conditioners, and vacuum cleaners wreaking havoc with sensitive electronics to
ignore this rule of thumb.

The electrical regulations in your area must always take precedence
over any ideas presented here. If in doubt, consult a power quality
expert in your area on how to ensure that you adhere to electrical reg-
ulations. Remember, electrical regulations take into account the fact
that human safety is far more important than the safety of the
equipment.

The Equipment Room
Environmental conditions can wreak havoc on systems, and yet it is quite common
to see critical systems deployed with little or no attention given to these matters. If
one looks at the statistics, it becomes obvious that attention to environmental fac-
tors can play a significant role in the stability and reliability of systems.

Humidity

Simply put, humidity is water in the air. Water is a disaster for electronics, for two
main reasons: 1) water is a catalyst for corrosion, and 2) water is conductive enough
that it can cause short circuits. Do not install any electronic equipment in areas of
high humidity, without providing a means to remove the moisture.

Temperature

Heat is the enemy of electronics. The cooler you keep your system, the more reliably
it will perform. If you cannot provide a properly cooled room for your system, at a
minimum ensure that it is placed in a location that ensures a steady supply of clean,

,ch02.20169 Page 21 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

22 | Chapter 2: Preparing a System for Asterisk

cool air. Also, keep the temperature steady. Changes in temperature can lead to con-
densation and other damaging changes.

Dust

There is an old adage in the computer industry that holds that dust bunnies inside of
a computer are lucky. Let’s consider some of the realities of dust bunnies:

• Significant buildup of dust can restrict airflow inside the system, leading to
increased levels of heat.

• Dust can contain metal particles, which, in sufficient quantities, can contribute
to signal degradation or shorts on circuit boards.

Put critical servers in a filtered environment, and clean out dust bunnies on a regular
schedule.

Security

Server security naturally involves protecting against network-originated intrusions,
but the environment also plays a part in the security of a system. Telephone equip-
ment should always be locked away, and only persons who have a need to access the
equipment should be allowed near it.

Telephony Hardware
If you are going to connect Asterisk to any legacy telecommunications equipment,
you will need the correct hardware. The hardware you require will be determined by
what it is you want to achieve.

Connecting to the PSTN
Asterisk allows you to seamlessly bridge circuit-switched telecommunications net-
works* with packet-switched data networks.† Because of Asterisk’s open architecture
(and open source code), it is ultimately possible to connect any standards-compliant
interface hardware. The selection of open source telephony interface boards is cur-
rently limited, but as interest in Asterisk grows, that will rapidly change.‡ At the
moment, one of the most popular and cost-effective ways to connect to the PSTN is

* Often referred to as TDM networks, due to the Time Division Multiplexing used to carry traffic through the
PSTN.

† Popularly called VoIP networks, although Voice over IP is not the only method of transmitting voice over
packet networks (Voice over Frame Relay was very popular in the late 1990s).

‡ The evolution of inexpensive, commodity-based telephony hardware is only slightly behind the telephony
software revolution. New companies spring up on a weekly basis, each one bringing new and inexpensive
standards-based devices into the market.

,ch02.20169 Page 22 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Telephony Hardware | 23

to use the interface cards that evolved from the work of the Zapata Telephony
Project (http://www.zapatatelephony.org).

Analog interface cards

Unless you need a lot of channels (or a have lot of money to spend each month on
telecommunications facilities), chances are that your PSTN interface will consist of
one or more analog circuits, each of which will require a Foreign eXchange Office
(FXO) port.

Digium, the company that sponsors Asterisk development, produces the most popu-
lar analog interface card for Asterisk, known as the TDM400P.* The TDM400P is a
four-port base card that allows for the insertion of up to four daughter cards, which
deliver either FXO or Foreign eXchange Station (FXS) ports. The TDM400P can be
purchased with these cards preinstalled, and Digium has designated part numbers to
describe these configurations. The naming convention is TDM x y B, where x and y
are numbers representing the quantity of FXS and FXO† cards on the board, respec-
tively. Check out Digium’s web site (http://www.digium.com) for more information
about this card.

An older card produced by Digium was known as the X100P. It is no longer avail-
able from Digium, but you may be able to find a clone of this card.

Another company that produces Asterisk-compatible analog cards is Voicetronix.
They have three Asterisk cards in their analog lineup: OpenLine4, OpenSwitch6, and
OpenSwitch12.

Digital interface cards

If you require more than 10 circuits, or require digital connectivity, chances are
you’re going to be in the market for a T1 or E1 card.‡ Bear in mind, though, that the
monthly charges for a digital PSTN circuit vary widely. In some places, as few as five
circuits can justify a digital circuit; in others, the technology may never be cost-justi-
fiable. The more competition there is in your area, the better chance you have of
finding a good deal. Be sure to shop around.

The Zapata Telephony Project originally produced a T1 card, the Tormenta, that is
the ancestor of most Asterisk-compatible T1 cards. The original Tormenta cards are
now considered obsolete, but they do still work with Asterisk. Currently, the only
company known to be producing these cards is Varion.

* The TDM400P is not, in fact, a TDM card at all. It is analog.

† FXS and FXO refer to the opposing ends of an analog circuit. Which one you need will be determined by
what you want to connect to. Chapter 7 discusses these in more detail.

‡ T1 and E1 are digital telephony circuits. We’ll discuss them further in Chapter 7.

,ch02.20169 Page 23 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

24 | Chapter 2: Preparing a System for Asterisk

Digium makes several different digital circuit interface cards. The features on the
cards are the same; the primary differences are whether they provide T1 or E1 inter-
faces, and how many interfaces each card provides. Although it’s technically possi-
ble, the general consensus in the Asterisk community is that no more than one of
these cards should be deployed in a single system.

Sangoma, who have been producing open source WAN cards for many years, have
recently added Asterisk support for their T1/E1 cards.* Sangoma’s cards contain
powerful field-programmable gate arrays (FPGAs), which make them extremely flexi-
ble. In an Asterisk environment, for example, they have been programmed to inter-
face with the Zapata channel driver.

Channel banks

A channel bank is loosely defined as a device that allows a digital circuit to be de-
multiplexed into several analog circuits (and vice versa). More specifically, a channel
bank lets you connect analog telephones and lines into a system across a T1 line.
Figure 2-2 shows how a channel bank fits into a typical office phone system.

Although they can be expensive to purchase, many people feel very strongly that the
only proper way to integrate analog circuits and devices into Asterisk is through a
channel bank.

Other types of PSTN interfaces

Many VoIP gateways exist that can be configured to provide access to PSTN circuits.
Generally speaking, these will be of most use in a smaller system (one or two lines).
They can also be very complicated to configure, as the interaction between the vari-
ous networks and devices requires a solid understanding of both telephony and VoIP

* It should be noted that a Sangoma Frame Relay card figured prominently in the original development of
Asterisk (see http://linuxdevices.com/articles/AT8678310302.html)—Sangoma has a long history of support-
ing open source WAN interfaces with Linux.

Figure 2-2. Channel bank

FXO
FXS

Channel bank

T1

PBX

Digital Analog

Central office
FXS

,ch02.20169 Page 24 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Types of Phone | 25

fundamentals. For that reason, we will not discuss these devices in detail in this
book. They are worth looking into, however—popular units are made by Sipura,
Grandstream, Digium, and many other companies.

Another way to connect to the PSTN is through the use of Basic Rate Interface (BRI)
ISDN circuits. BRI is a digital telecom standard that specifies a two-channel circuit
that can carry up to 144 kbps of traffic. It is very rarely used in North America and
most of the rest of the world, but it’s quite popular in Europe. Due to the variety of
different ways this technology has been implemented, we will not be discussing BRI
in very much detail in this book.

Connecting Exclusively to a Packet-Based Telephone Network
If you do not need to connect to the PSTN, Asterisk requires no hardware other than
a server with a Network Interface Card.

However, if you are going to be providing music on hold or conferencing and you
have no physical timing source, you will need the ztdummy Linux kernel module.
ztdummy is a clocking mechanism designed to provide a timing source to a system
where no hardware timing source exists. In Version 2.4 of the Linux kernel, to use
ztdummy you must have a UHCI-type USB controller on your motherboard. In Linux
2.6, that requirement is no more.

Types of Phone
Since the title of this book is Asterisk: The Future of Telephony, we would be remiss if
we didn’t discuss the devices that all of this technology ultimately has to intercon-
nect: telephones!

We all know what a telephone is—but will it be the same five years from now? Part
of the revolution that Asterisk is contributing to is the evolution of the telephone,
from a simple audio communications device into a multimedia communications ter-
minal providing all kinds of yet-to-be-imagined functions.

As an introduction to this exciting concept, we will briefly discuss the various kinds
of devices we currently call “telephones” (any of which can easily be integrated with
Asterisk). We will also discuss some ideas about what these devices may evolve into
in the future (devices that will also easily integrate with Asterisk).

Physical Telephones
Any physical device whose primary purpose is terminating an on-demand audio
communications circuit between two points can be classified as a physical tele-
phone. At a minimum, such a device has a handset and a dial pad; it may also have
feature keys, a display screen, and various audio interfaces.

,ch02.20169 Page 25 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

26 | Chapter 2: Preparing a System for Asterisk

This section takes a brief look at the various user (or endpoint) devices you might
want to connect to your Asterisk system. We’ll delve more deeply into the mechan-
ics of analog and digital telephony in Chapter 7.

Analog telephones

Analog phones have been around since the invention of the telephone. Up until
about 20 years ago, all telephones were analog. Although analog phones have some
technical differences in different countries, they all operate on similar principles.

When a human being speaks, the vocal cords, tongue, teeth, and lips create a com-
plex variety of sounds. The purpose of the telephone is to capture these sounds and
convert them into a format suitable for transmission over wires. In an analog tele-
phone, the transmitted signal is analogous to the sound waves produced by the per-
son speaking. If you could see the sound waves passing from the mouth to the
microphone, they would be proportional to the electrical signal you could measure
on the wire.

This contiguous connection is referred to as a circuit, which the tele-
phone network used to use electromechanical switches to create;
hence the term circuit-switched network.

Analog telephones are the only kind of phone that are commonly available in any
retail electronics store. In the next few years, that can be expected to change
dramatically.

Proprietary digital telephones

As digital switching systems developed in the 1980s and 1990s, telecommunications
companies developed digital Private Branch eXchanges (PBXs) and Key Telephone
Systems (KTSs). The proprietary telephones developed for these systems were com-
pletely dependent on the systems to which they were connected and could not be
used on any other systems. Even phones produced by the same manufacturer were
not cross-compatible (for example, a Nortel Norstar set will not work on a Nortel
Meridian 1 PBX). The proprietary nature of digital telephones limits their future. In
this emerging era of standards-based communications, they will quickly be relegated
to the dustbin of history.

The handset in a digital telephone is generally identical in function to the handset in
an analog telephone, and they are often compatible with each other. Where the digi-
tal phone is different is that inside the telephone, the analog signal is sampled and
converted into a digital signal—that is, a numerical representation of the analog
waveform. We’ll leave a detailed discussion of digital signals until Chapter 7; for
now, suffice it to say that the primary advantage of a digital signal is that it can be
transmitted over limitless distances with no loss of signal quality.

,ch02.20169 Page 26 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Types of Phone | 27

The chances of anyone ever making a proprietary digital phone directly compatible
with Asterisk are fairly small, but companies such as Citel (http://www.citel.com)
have created gateways that convert the proprietary signals to SIP.*

ISDN telephones

Prior to VoIP, the closest thing to a standards-based digital telephone was an ISDN-
BRI terminal. Developed in the early 1980s, ISDN was expected to revolutionize the
telecommunications industry in exactly the same way that VoIP promises to finally
achieve today.

There are two types of ISDN: Primary Rate Interface (PRI) and Basic
Rate Interface (BRI). PRI is commonly used to provide trunking facili-
ties between PBXs and the PSTN, and is widely deployed. BRI is not at
all common in North America, but has enjoyed some success in Europe.

While ISDN was widely deployed by the telephone companies, many consider the
standard to have been a flop, as it generally failed to live up to its promises. The high
costs of implementation, recurring charges, and lack of cooperation amongst the major
players contributed to an environment that caused more problems than it solved.

BRI was intended to service terminal devices and smaller sites (a BRI loop provides
two digital circuits). While a wealth of BRI devices have been developed, BRI has
largely been deprecated in favor of faster, less expensive technologies such as ADSL,
cable modems, and VoIP.

BRI is still very popular for use in video-conferencing equipment, as it provides a
fixed bandwidth link. Also, BRI does not have the type of quality of service issues a
VoIP connection might, as it is circuit-switched.

BRI is still sometimes used in place of analog circuits to provide trunking. Whether
or not this is a good idea depends mostly on how your local phone company prices
the service, and what features it is willing to provide.

IP telephones

IP telephones are heralds of the most exciting change in the telecommunications
industry. In the very near future, standards-based IP telephones will be available in
retail stores.† The wealth of possibilities inherent in these devices will cause an
explosion of interesting applications, from video phones, to high-fidelity broadcast-
ing devices, to wireless mobility solutions, to purpose-built sets for particular indus-
tries, to flexible all-in-one multimedia systems.

* The Session Initiation Protocol is currently the most well-known and popular protocol for VoIP. We will dis-
cuss it further in Chapter 8.

† As of this writing, Wal-Mart was offering a basic IP telephone on its web site (http://www.walmart.com).

,ch02.20169 Page 27 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

28 | Chapter 2: Preparing a System for Asterisk

The revolution that IP telephones will spawn has nothing to do with a new type of
wire to connect your phone to, and everything to do with giving you the power to
communicate the way you want.

The early-model IP phones that have been available for several years now do not rep-
resent the future of these exciting appliances. They are merely a stepping-stone; a
familiar package in which to wrap a fantastic new way of thinking.

The future is far more promising.

Soft Phones
A soft phone is a software program that provides telephone functionality on a non-
telephone device, such as a PC or PDA. So how do we recognize such a beast? What
might at first glance seem a simple question actually raises many. A soft phone
should probably have some sort of dial pad, and it should provide an interface that
reminds users of a telephone. But will this always be the case?

The term “soft phone” can be expected to evolve rapidly, as our concept of what
exactly a telephone is undergoes a revolutionary metamorphosis. As an example of
this evolution, consider the following: would we correctly define popular communi-
cation programs such as Instant Messenger as soft phones? IM provides the ability to
initiate and receive standards-based VoIP connections. Does this not qualify it as a
soft phone? Answering that question requires knowledge of the future that we do not
yet possess. Suffice it to say that while at this point in time, soft phones are expected
to look and sound like traditional phones, that conception is likely to change in the
very near future.

As standards evolve and we move away from the traditional telephone and toward a
multimedia communications culture, the line between soft phones and physical tele-
phones will become blurred indeed. For example, we might purchase a communica-
tions terminal to serve as a telephone, and install a soft phone program onto it to
provide the functions we desire.

Having thus muddied the waters, the best we can do at this point is to define what
the term “soft phone” will refer to in relation to this book, with the understanding
that the meaning of the term can be expected to undergo a massive change over the
next few years. For our purposes, we will define a soft phone: any device that runs
on a personal computer, presents the look and feel of a telephone, and provides as its
primary function the ability to make and receive full-duplex audio communications
(formerly known as “phone calls”)* through E.164 addressing.†

* OK, so you think you know what a phone call is? So did we. Let’s just wait a few years, shall we?

† E.164 is the ITU standard that defines how phone numbers are assigned. If you’ve used a telephone, you’ve
used E.164 addressing.

,ch02.20169 Page 28 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Types of Phone | 29

Telephony Adaptors
A telephony adaptor (usually referred to as an ATA, or Analog Terminal Adaptor) can
loosely be described as an end-user device that converts communications circuits
from one protocol to another. Most commonly, these devices are used to convert
from some digital (IP or proprietary) signal to an analog connection that you can
plug a standard telephone or fax machine into.

These adaptors could be described as gateways, for that is their function. However,
popular usage of the term telephony gateway would probably best describe a multi-
port telephony adaptor, generally with more complicated routing functions.

Telephony adaptors will be with us for as long as there is a need to connect incom-
patible standards and old devices to new networks. Eventually, our reliance on these
devices will disappear, as did our reliance on the modem—obsolescence through
irrelevance.

Communications Terminals
Communications terminal is an old term that disappeared for a decade or two and is
being reintroduced here, very possibly for no other reason than that it needs to be
discussed so that it can eventually disappear again—once it becomes ubiquitous.

First, a little history. When digital PBX systems were first released, manufacturers of
these machines realized that they could not refer to their endpoints as telephones—
their proprietary nature prevented them from connecting to the PSTN. They were
therefore called terminals, or stations. Users, of course, weren’t having any of it. It
looked like a telephone and acted like a telephone, and therefore it was a telephone.
You will still occasionally find PBX sets referred to as terminals, but for the most part
they are called telephones.

The renewed relevance of the term “communications terminal” has nothing to do
with anything proprietary—rather, it’s the opposite. As we develop more creative
ways of communicating with each other, we gain access to many different devices
that will allow us to connect. Consider the following scenarios:

• If I use my PDA to connect to my voicemail and retrieve my voice messages (con-
verted to text), does my PDA become a phone?

• If I attach a video camera to my PC, connect to a company’s web site, and
request a live chat with a customer service rep, is my PC now a telephone?

• If I use the IP phone in my kitchen to surf for recipes, is that a phone call?

The point is simply this: we’ll probably always be “phoning” each other, but will we
always be using “telephones” to do so?

,ch02.20169 Page 29 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

30 | Chapter 2: Preparing a System for Asterisk

Linux Considerations
If you ask anyone at the Free Software Foundation, they will tell you that what we
know as Linux is in fact GNU/Linux. All etymological arguments aside, there is
some valuable truth to this statement. While the kernel of the operating system is
indeed Linux, the vast majority of the utilities installed on a Linux system and used
regularly are in fact GNU utilities. “Linux” is probably only 5% Linux, possibly 75%
GNU, and perhaps 20% everything else.

Why does this matter? Well, the flexibility of Linux is both a blessing and a curse. It
is a blessing because with Linux you can truly craft your very own operating system
from scratch. Since very few people ever do this, the curse is in large part due to the
responsibility you must bear in determining which of the GNU utilities to install, and
how to configure the system.

If this seems overwhelming, do not fear. In the next chapter, we will discuss the
selection, installation, and configuration of the software environment for your Aster-
isk system.

Conclusion
In this chapter, we’ve discussed all manner of issues that can contribute to the stabil-
ity and quality of an Asterisk installation. Before we scare you off, we should tell you
that many people have installed Asterisk on top of a graphical Linux workstation,
running a web server, a database, an X-windowing environment, and who knows
what else, with no problems whatsoever. How much time and effort you should
devote to following the best practices and engineering tips in this chapter all depends
on how much work you expect the Asterisk server to perform, and how much qual-
ity and reliability your system must provide.

What we have attempted to do in this chapter is give you a feel for the kinds of best
practices that will help to ensure that your Asterisk system will be built on a reliable,
stable platform. Asterisk is quite willing to operate under far worse conditions, but
the amount of effort and consideration you decide to give these matters will play a
part in the stability of your PBX. Your decision should depend on how critical your
Asterisk system will be.

,ch02.20169 Page 30 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

31

Chapter 3 CHAPTER 3

Installing Asterisk

I long to accomplish great and noble tasks, but it is my
chief duty to accomplish humble tasks as though they
were great and noble. The world is moved along, not

only by the mighty shoves of its heroes, but also by the
aggregate of the tiny pushes of each honest worker.

—Helen Keller

In the previous chapter, we discussed preparing a system to install Asterisk. Now it’s
time to obtain, extract, compile, and install the software.

Although a large number of Linux distributions* and PC architectures are excellent
candidates for Asterisk, we have chosen to focus on a single distribution in order to
maintain brevity and clarity throughout the book. The instructions that follow have
been made as generic as possible, but you may notice a leaning toward Red Hat
structures and utilities. We have chosen to focus on Red Hat because its command
set, directory structure, and so forth are likely to be familiar to the majority of users
(we have found that most Linux administrators are familiar with Red Hat, even if
they don’t prefer it). However, this doesn’t mean that Red Hat is the only choice, or
even the best one for you. A question that often appears on the mailing lists is:
“Which distribution of Linux is the best to use with Asterisk?” The multitude of
answers generally boils down to “the one you like the best.”

What Packages Do I Need?
Asterisk uses three main packages: the main Asterisk program (asterisk), the Zapata
telephony drivers (zaptel), and the PRI libraries (libpri). If you plan on a pure VoIP
network, the only real requirement is the asterisk package. The zaptel drivers are

* And some non-Linux operating systems as well, such as Solaris, *BSD, and OS X. However, while people
have managed to successfully run Asterisk on these alternative systems, Asterisk was, and continues to be,
actively developed for Linux.

,ch03.20288 Page 31 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

32 | Chapter 3: Installing Asterisk

required if you are using analog or digital hardware, or if you’re using the ztdummy
driver (discussed later in this chapter) as a timing interface. The libpri library is tech-
nically optional unless you’re using ISDN PRI interfaces, and you may save a small
amount of RAM if you don’t load it, but we recommend that it be installed in con-
junction with the zaptel package for completeness.

One other package you may want to install is asterisk-sounds. While Asterisk comes
with many sound prompts in the main source distribution, the asterisk-sounds pack-
age will give you even more. If you would like to expand the number of profession-
ally recorded prompts for use with your Asterisk system, this package is essential.
Some of our examples in the following chapters will make use of files included in this
package, so we will assume that you have it installed.

Package Requirements
To compile Asterisk, you must install the GCC compiler (Version 3.x or later) and its
dependencies. While Version 2.96 of GCC may work for the time being, future ver-
sions will not support it. Asterisk also requires bison, a parser generator program that
replaces yacc, and ncurses for CLI functionality. The cryptographic library in Aster-
isk requires OpenSSL and its development packages. If you want to use ztdummy for
timing, or any of the hardware drivers provided by Zaptel, you’ll need to install the
zaptel package as well. If you are installing libpri, be sure to install it before asterisk
(see “Compiling libpri”).

Zaptel requires libnewt and its development packages for the zttool program (see
“Using ztcfg and zttool,” below) and the usb-uhci module for ztdummy. If you’re
using PRI interfaces, Zaptel also requires the libpri package (again, even if you aren’t
using PRI circuits, we recommend that you install libpri along with zaptel).

The following sections discuss how to obtain, extract, compile, and install the aster-
isk, zaptel, libpri, and asterisk-sounds packages.

Obtaining the Source Code
The Asterisk source code can be obtained either through FTP or CVS. We will show
you how to acquire the source with both methods, although you only need to use
one of them to retrieve the packages (FTP is the preferred method).

Obtaining Asterisk Source Code from FTP
The Asterisk source code can be obtained from the Digium FTP server, located at ftp://
ftp.digium.com. The easiest way to obtain the stable release is through the use of the
program wget.

,ch03.20288 Page 32 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Obtaining the Source Code | 33

Note that we will be making use of the /usr/src/ directory to extract and compile the
Asterisk source. Also be aware that you will need root access to write files to the /usr/
src/ directory and to install Asterisk and its associated packages.

To obtain the latest stable source code via wget, enter the following commands on
the command line:

cd /usr/src/
wget -–passive-ftp ftp.digium.com/pub/asterisk/asterisk-1.*.tar.gz
wget -–passive-ftp ftp.digium.com/pub/asterisk/asterisk-sounds-*.tar.gz
wget -–passive-ftp ftp.digium.com/pub/zaptel/zaptel-*.tar.gz
wget -–passive-ftp ftp.digium.com/pub/libpri/libpri-*.tar.gz

As long as Digium doesn’t change the way they put things on the FTP
site, the wget command will automagically get the latest version. You
may also replace the wildcard mask (*) with the currently available
software version.

Now that you’ve retrieved the files for Asterisk and the Digium hardware, you are
ready to extract the code.

Extracting the Source Code
If you use wget to obtain the source code from the FTP server, you will need to
extract it before compiling. If you didn’t download the packages to /usr/src/, either

Stable and Head
Asterisk comes in two different flavors, generally referred to as stable and head. Stable,
as the name implies, is the established branch of Asterisk for use in production sys-
tems. The head branch is what the developers use to test new features and bug fixes.

Bug fixes (not features) are merged over to the stable branch after a reasonable period
of testing. It is entirely possible that the development branch may be broken at certain
points during testing; thus, the stable branch is what you will want to run your produc-
tion system on, and it is what we will be using throughout this book.

You can obtain stable releases via FTP. Both the stable and head branches of Asterisk
can also be obtained from CVS, as explained later in this chapter. However, it is impor-
tant to note the difference between releases and CVS. Releases are snapshots from the
stable CVS tree, tagged with a version number and released via the FTP server when a
new stable release is deemed ready. Note that the stable CVS branch is not a release—
it’s a work in a progress, and it may be buggy (i.e., not so stable after all). The FTP tar-
balls are the actual releases.

To summarize, use only stable releases obtained via the FTP server for production
systems.

,ch03.20288 Page 33 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

34 | Chapter 3: Installing Asterisk

move them there now, or specify the full path to their location. We will be using the
GNU tar application to extract the source code from the compressed archive. This is
a simple process that can be achieved through the use of the following commands:

cd /usr/src/
tar zxvf zaptel-*.tar.gz
tar zxvf libpri-*.tar.gz
tar zxvf asterisk-*.tar.gz
tar zxvf asterisk-sounds*.tar.gz

These commands will extract the packages and source code to their respective
directories.

Obtaining Asterisk Source Code from CVS
The Concurrent Versioning System (CVS) is a tool that provides a central repository
that large (and diverse) development teams can use to manage the multitude of files
associated with a development project. When a change is made, it is committed to
the CVS server, where it is immediately available for download and compilation.
Another added benefit of using CVS is that the version for any particular file can be
rolled back to a certain instance, so that if something was working at one point but a
change causes it to break, you can easily revert to the working version. This is true
for the entire tree as well. If you find that installing the latest version of Asterisk
causes any part of the system to break, you can “roll back” to an earlier point in time
and investigate the cause of the problem.

If you are a developer looking to obtain the latest updates to the source code, you
will need to get them from the CVS servers. You can also download the stable branch
via CVS:

• Export the CVSROOT path:
cd /usr/src/
export CVSROOT=:pserver:anoncvs:anoncvs@cvs.digium.com:/usr/cvsroot

• Download HEAD from CVS:
cvs checkout zaptel libpri asterisk

• Download STABLE 1.0 from CVS:
cvs checkout –r v1-0 zaptel libpri asterisk

• Download STABLE 1.2 from CVS:
cvs checkout –r v1-2 zaptel libpri asterisk

• Download optional modules from CVS:
cvs checkout asterisk-sounds asterisk-addons

Again, note that the stable branch available from CVS is not a release and should not
be used for production systems.

,ch03.20288 Page 34 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Compiling Zaptel | 35

Compiling Zaptel
Figure 3-1 shows the layers of interaction between Asterisk and the Linux kernel
with respect to hardware control. On the Asterisk side is the Zapata channel mod-
ule, chan_zap. Asterisk uses this interface to communicate with the Linux kernel,
where the drivers for the hardware are loaded.

The Zaptel interface is a kernel loadable module that presents an abstraction layer
between the hardware drivers and the Zapata module in Asterisk. It is this concept
that allows the device drivers to be modified without any changes being made to the
Asterisk source itself. The device drivers are used to communicate with the hard-
ware directly and to pass the information between Zaptel and the hardware.

While Asterisk itself compiles on a variety of platforms, the Zaptel
drivers are Linux-specific—they are written to interface directly with
the Linux kernel. There are no official Zaptel drivers for other operat-
ing systems, although work has been going on to write drivers for
FreeBSD.

We will discuss the Zaptel compile-time options momentarily, in “The zconfig.h
File.” First, let’s take a look at compiling and installing the drivers. (The configura-
tion of Zaptel drivers will be discussed in the next chapter.)

Figure 3-1. Layers of device interaction with Asterisk

Asterisk

chan_zap.so

/dev/zap

Zaptel

Hardware driver
(wctdm)

Hardware

Linux kernel

,ch03.20288 Page 35 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

36 | Chapter 3: Installing Asterisk

Before compiling the Zaptel drivers on a system running a Linux 2.4
kernel, you should verify that /usr/src/ contains a symbolic link named
linux-2.4 pointing to your kernel source. If the symbolic link doesn’t
exist, you can create it with the following command (assuming you’ve
installed the source in /usr/src/):

ln –s /usr/src/`uname –r` /usr/src/linux-2.4

Computers running Linux 2.6 kernel–based distributions do not usu-
ally require the use of the symbolic link, as these distributions will
search for the kernel build directory automatically. However, if you’ve
placed the build directory in a nonstandard place (i.e., somewhere
other than /lib/modules/<kernel version>/build/), you will require the
use of the symbolic link.

The ztdummy Driver
In Asterisk, certain applications and features require a timing device in order to oper-
ate (Asterisk won’t even compile them if no timing device is found). All Digium PCI
hardware provides a 1-kHz timing interface. If you lack the PCI hardware required to
provide timing, the ztdummy driver can be used as a timing device. On Linux 2.4 ker-
nel–based distributions, ztdummy must use the clocking provided by the UHCI USB
controller. The driver looks to see that the usb-uhci module is loaded and that the ker-
nel version is at least 2.4.5. Older kernel versions are incompatible with ztdummy.

On a 2.6 kernel–based distribution, ztdummy does not require the use of the USB
controller. (As of v2.6.0, the kernel now provides 1-kHz timing with which the driver
can interface; thus, the USB controller hardware requirement is no longer necessary.)

The default Makefile configuration does not create ztdummy. To compile ztdummy,
you must remove a comment marker from the Makefile. Open it in your favorite text
editor and look for the following line:

MODULES=zaptel tor2 torisa wcusb wcfxo wctdm \
 ztdynamic ztd-eth wct1xxp wct4xxp wcte11xp # ztdummy

Remove the hash* (#) symbol from in front of “ztdummy,” save the file, and compile
Zaptel as usual.

The Zapata Telephony Drivers
Compiling the Zapata telephony drivers for use with your Digium hardware is
straightforward—simply run make for either the 2.4 or 2.6 Linux kernels (the Make-

* The # symbol is most widely known as “hash,” so that is what we have chosen to call it. North Americans
tend to call it a “pound sign,” the ITU uses the term “square,” and yet others call it a “crosshatch” or “num-
ber sign.” Another term, made up by Don Macpherson to describe the # symbol during initial training on an
early PBX system, is “octothorpe.” This term eventually found its way into memos and letters at Bell Labs,
then into other official documents, and from there leaked to the Internet.

,ch03.20288 Page 36 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Compiling Zaptel | 37

file will determine the kernel version for you). Use these commands to compile Zap-
tel (replace version with your version of zaptel):

cd /usr/src/zaptel-version
make clean
make
make install

While running make clean is not always necessary, it’s a good idea to
run it before recompiling any of the modules, as it will remove the
compiled binary files from within the source code directory. You can
also use it to clean up after installing, if you don’t like to leave the
compiled binaries floating around. Note that this removes the binaries
only from the source directory, not from the system.

In addition to the executables, make clean also removes the intermedi-
ary files (i.e., the object files) after compilation. You don’t need them
occupying space on your hard drive.

If you’re using a system that makes use of the /etc/rc.d/init.d/ or /etc/init.d/ directo-
ries, you may wish to run the make config command as well. This will install the star-
tup scripts and configure the system, using the chkconfig command to load the
zaptel module automatically at startup.

The Debian equivalent of chkconfig is update-rc.d.

Using ztcfg and zttool
Two programs installed along with Zaptel are ztcfg and zttool. The ztcfg program is
used to read the configuration in /etc/zaptel.conf to configure the hardware. The
zttool program can be used to check the status of your installed hardware. For
instance, if you are using a T1 card and there is no communication between the end-
points, you will see a red alarm. If everything is configured correctly and communica-
tion is possible, you should see an “OK.” The zttool application is also useful for
analog cards, because it tells you their current state (configured, off-hook, etc.). The
use of these programs will be explored further in the next chapter.

The libnewt libraries and its development packages (newt-devel on Red
Hat–based distributions) must be installed for zttool to be compiled.

,ch03.20288 Page 37 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

38 | Chapter 3: Installing Asterisk

The zconfig.h File
The zconfig.h file is where many of the Zaptel compile-time options lie. For the most
part, you should not need to edit this file, but below are some of the options that
may be of interest. To enable the options, remove the comment tags (/* */). If you
decide to enable any of these options, be sure to do a make clean before recompiling
and reinstalling Zaptel.

Boost ringer

By enabling the BOOST_RINGER option, you increase the amount of voltage supplied to
a telephone during ringing from ~70V to ~89V. Some devices may not detect ring-
ing below certain voltages, so this setting may be necessary. Note that upping the
voltage requires more power, and that it will probably only be necessary on a tele-
phone connected to a long loop. Basically, you should leave this alone unless the far
end isn’t detecting ringing properly. To enable this option, uncomment the follow-
ing line:

/* #define BOOST_RINGER */

The BOOST_RINGER option can also be declared when loading the driver via modprobe,
so it does not need to be compiled into the driver (recommended).

Disable µ-law/A-law precomputation

Defining CONFIG_CALC_XLAW tells Zaptel to not precompute µ-law/A-law into tables
and to recalculate it for each sample. We haven’t timed it, but the original coder felt
that if you have a small number of channels and/or a small level-2 cache, it may be
quicker to execute the calculation code than to actually do a lookup on the table
loaded into memory.

To enable this option, uncomment the following line within zconfig.h:

/* #define CONFIG_CALC_XLAW */

Enable MMX optimization

You can enable MMX optimization (if your processor supports it) by removing the
comment tags around the following line:

/* #define CONFIG_ZAPTEL_MMX */

Be aware that CONFIG_ZAPTEL_MMX is considered to be incompatible with AMD proces-
sors and can cause system instability.

Choose echo cancellation method

All the echo cancellers in Asterisk use a Finite Impulse Response (FIR) algorithm.
The differences between them—mostly in code implementation and slight algorithm

,ch03.20288 Page 38 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Compiling Zaptel | 39

tweaks—are minimal. By default, the MARK2 echo canceller is used, and it is gener-
ally considered the most robust. To change the default, add comment tags around
the #define ECHO_CAN_MARK2 line and uncomment another line:

/* #define ECHO_CAN_STEVE */
/* #define ECHO_CAN_STEVE2 */
/* #define ECHO_CAN_MARK */
#define ECHO_CAN_MARK2
/* #define ECHO_CAN_MARK3 */

Enable aggressive suppression

Aggressive residual echo suppression with the MARK2 echo canceller can be enabled
by removing the comment tags around the following line:

/* #define AGGRESSIVE_SUPPRESSOR */

The aggressive suppressor makes the nonlinear processor (NLP) stronger. What the
NLP essentially does is say, “If the sample is that quiet anyway, make the volume
level about 0.”

Disable echo cancellation

When echo cancellation is enabled in Asterisk, it is possible to disable it by sending a
2100-Hz tone at the beginning of a call. If you do not want Asterisk to disable echo
cancellation even when it detects the echo cancel disable tone, uncomment the fol-
lowing line:

/* #define NO_ECHOCAN_DISABLE */

Fax machines and modems use the 2100-Hz tone during negotiation, and Asterisk
monitors for this tone during call setup.

Enable HDLC

When using the Zaptel driver with T1 or E1 hardware, you can configure Zaptel to
use TDM channels for data instead of voice. To enable HDLC functionality in the
drivers, uncomment the following line:

/* #define CONFIG_ZAPATA_NET */

For this change to be meaningful, you must also use the sethdlc utility and perform
some configuration in zapata.conf.

Enable ZapRAS

You can also make use of the ZapRAS program to turn Asterisk into a Remote Access
Server (RAS) for use with your ISDN connections. To enable this functionality, you
must uncomment the following line from within the zconfig.h file:

/* #define CONFIG_ZAPATA_PPP */

,ch03.20288 Page 39 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

40 | Chapter 3: Installing Asterisk

You must also patch Asterisk and configure a PPP daemon, so be aware that this task
is nontrivial.

Enable Zaptel’s watchdog

You can tell Zaptel to monitor the status of interfaces via its built-in “watchdog.” It
will check if the interfaces stop taking interrupts or otherwise misbehave. If this hap-
pens, the hardware will automatically be restarted. To enable the watchdog, uncom-
ment this line:

/* #define CONFIG_ZAPTEL_WATCHDOG */

Set default tone zone

The tone zone info option is used to select which set of tones (e.g., dial tone, busy
indication, ring tone, stutter, etc.), as defined in the zonedata.c file, should be used as
the default. The zonedata.c file contains the frequencies and patterns that Asterisk
uses to communicate on the PSTN networks in various countries and to signal con-
nected telephones. The default tone zone (0) is used to indicate North American sig-
naling frequencies. Other tone zones include Australia (1), France (2), Japan (7),
Taiwan (14), and many others. You can change the default on the following line:

#define DEFAULT_TONE_ZONE 0

Enable CAC ground start signaling

Some devices, such as the FXO ports on a Carrier Access Corporation (CAC) chan-
nel bank, have nonstandard FXS ground start signaling start states (A=low, B=low).
You can configure the drivers to use this state by removing the comment tags around
the following line:

/* #define CONFIG_CAC_GROUNDSTART */

TDM400P Revision H PCI ID workaround

If you happen to be using an older TDM400P Revision H card, you may find that it
sometimes forgets its PCI ID. To make the wctdm driver essentially match all subven-
dor IDs, uncomment the following line:

/* #define TDM_REVH_MATCHALL */

This may be required when using older revisions of TDM400P cards with newer ver-
sions of Asterisk, due to a change in the subvendor ID code. This has been known to
cause the following type of error when loading the wctdm module:

ZT_CHANCONFIG failed on channel 12: No such device or address (6)

Uncommenting the #define line above should resolve this problem.

,ch03.20288 Page 40 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Compiling Asterisk | 41

Passing Module Parameters to Configure Zaptel
Some of the Zaptel options can also be enabled when loading the module, by passing
module parameters to the wctdm driver. You can list these parameters at load time (as
opposed to statically changing them in the zconfig.h file) with the modinfo command:

modinfo -p wctdm
debug int
loopcurrent int
robust int
_opermode int
opermode string
timingonly int
lowpower int
boostringer int
fxshonormode int

You then pass the module parameters to the modprobe command. For example, you
can use the following command to activate the boostringer parameter when the
module is loaded, instead of statically defining its use with #define BOOST_RINGER in
the zconfig.h file:

modprobe wctdm boostringer=1

Another common parameter to pass to a module is opermode. By passing opermode to
the wctdm driver, you can configure the TDM400P to better deal with line imped-
ances for your country. opermode accepts a two-letter country code as its argument.

Compiling libpri
Compiling and installing libpri follows the same pattern as described above for zap-
tel. libpri is used by various makers of Time Division Multiplexing (TDM) hardware,
but even if you don’t have the hardware installed it is safe to compile and install this
library. You must compile and install libpri before Asterisk, as it will be detected and
used when Asterisk is compiled. Here are the commands (replace version with your
version of libpri):

cd /usr/src/libpri-version
make clean
make
make install

Compiling Asterisk
Once you’ve compiled and installed the zaptel and libpri packages (if you need them),
you can move on to Asterisk. This section walks you through a standard installation
and introduces some of the alternative make arguments that you may find useful. We’ll
also look at how you can edit the Makefile to optimize the compilation of Asterisk.

,ch03.20288 Page 41 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

42 | Chapter 3: Installing Asterisk

Standard Installation
Asterisk is compiled with gcc through the use of the GNU make program. Unlike
many other programs, there is no need to run a configuration script for Asterisk. To
get started compiling Asterisk, simply run the following commands (replace version
with your version of Asterisk):

cd /usr/src/asterisk-version
make clean
make
make install
make samples

Be aware that compile times will vary between systems. On a current-generation pro-
cessor, you shouldn’t need to wait more than five minutes. At Astricon, someone
reported successfully compiling Asterisk on a 133-MHz Pentium, but it took approx-
imately five hours. You do the math.

Run the make samples command to install the default configuration files. Installing
these files (instead of configuring each file manually) will allow you to get your Aster-
isk system up and running much faster. Many of the default values are fine for Aster-
isk. Files that require editing will be explained in future chapters.

If you already have configuration files installed in /etc/asterisk/ when
you run the make samples command, .old will be appended to the end
of each of your current configuration files—for example, extensions.
conf will be renamed extensions.conf.old. Be careful, though, because if
you run make samples more than once you will overwrite your original
configuration files!

The sample configuration files can also be found in the configs/ subdi-
rectory within your Asterisk sources directory.

If you’re using a system that makes use of the /etc/rc.d/init.d/ or /etc/init.d/ directo-
ries, you may wish to run the make config command as well. This will install the
startup scripts and configure the system (through the use of the chkconfig com-
mand) to execute Asterisk automatically at startup.

Alternative make Arguments
There are several other make arguments that you can pass at compile time. While
some of these will be discussed here, the remainder are used internally within the file
and really have no bearing or use for the end user. (Of course, new functions may
have been added, so be sure to check the Makefile for other options.)

Let’s take a look at some useful make arguments.

,ch03.20288 Page 42 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Compiling Asterisk | 43

make clean

The make clean command is used to remove the compiled binaries from within the
source directory. This command should be run before you attempt to recompile or, if
space is an issue, if you would like to clean up the files.

make update

This command is used to update the existing code from the Digium CVS server. If you
downloaded the source code from the FTP server, you will receive an error stating so.

A common problem that you may find if you update with the cvs
update command is that when you then do a show version at the Aster-
isk command-line interface (CLI), your version does not appear to
have been updated. This problem can be resolved by removing the
hidden .version file within the Asterisk source code directory before
recompiling, or by using the make update command (which will
remove the file for you).

make upgrade

If you run the make install command to install Asterisk after using the make update
command to update from CVS, the .version file will not be updated. If you do not
want to manually delete the .version file before running make and make install, you
can use the make upgrade command instead.

make webvmail

The Asterisk Web Voicemail script is used to give a graphical interface to your voice-
mail account, allowing you to manage and interact with your voicemail remotely
from a web browser.

When you run the make webvmail command, the Asterisk Web Voicemail script will
be placed into the cgi-bin/ directory of your HTTP daemon. If you have specific poli-
cies with respect to security, be aware that it uses a setuid root Perl script. This
command will install only on a Red Hat or Fedora box, as other distributions may
have different paths to their cgi-bin/ directories. (This, of course, can be changed by
editing the Makefile.)

make progdocs

This command will create documentation using the doxygen software from com-
ments placed within the source code by the developers. You must have the appropri-
ate doxygen software installed on your system in order for this to work. Note that
doxygen assumes that the source code is well documented, which, sadly, is not
always the case.

,ch03.20288 Page 43 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

44 | Chapter 3: Installing Asterisk

make mpg123

Asterisk uses the mpg123 program to stream MP3s during the use of Music on Hold
(MoH). Because Asterisk only works with mpg123 v0.59r, this shortcut will determine
if the correct version of mpg123 is installed on your system and, if not, will attempt to
download, extract, and compile it for you. Be aware that newer versions will not work,
and some distributions even symbolically link mpg321 and mpg123, which are entirely
different programs. If you run the make install command after running this com-
mand, Asterisk will detect the directory and install it for you as well.

make config

The make config command will install Red Hat–style initialization scripts, if the /etc/
rc.d/init.d or /etc/init.d directories are found to exist. If they do exist, the scripts are
installed with file permissions equal to 755. If the script detects that /etc/rc.d/init.d/
exists, the chkconfig --add asterisk command will also be run to cause Asterisk to
be started automatically at boot time. This is not the case, however, with distribu-
tions that only use the /etc/init.d/ directory. Running make config will not do any-
thing to an already running Asterisk process, or start one if it’s not running.

This script currently is only really useful on a Red Hat–based system, although ini-
tialization scripts are available for other distributions (such as Gentoo, Mandrake,
and Slackware) in the ./contrib./init.d/ directory of your Asterisk source directory.

Editing the Makefile
At the top of the Makefile contained within the Asterisk source directory are several
options for optimizing the compilation of Asterisk. You can enable GSM codec opti-
mizations (with the use of MMX instructions), disable configuration file overwrites,
add extra debugging information, change Asterisk’s installation and staging directo-
ries, and modify which type of processor you are compiling for. While you may never
edit or require any of these options, they are mentioned here for completeness.

Enabling GSM optimizations

Uncomment the following line in your Asterisk Makefile to enable GSM codec opti-
mizations on x86 CPU architectures that support MMX instructions:

#K6OPT = -DK6OPT

This includes newer Pentium processors, Pentium Pros, and the AMD K6 and K7
processors; however, you may not want to enable MMX support unless you have a
true Intel processor, as problems have been reported with the MMX instructions on
non-Intel processors.

,ch03.20288 Page 44 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Compiling Asterisk | 45

Disabling configuration file overwrites

By default, Asterisk will overwrite your configuration files if you run make samples
more than once. To change this behavior, change the y in the line below to n:

OVERWRITE=y

Enabling debug profiling information

Debug symbols allow you to do symbolic debugging. The profiling information (-pg)
flag will produce a file when you run Asterisk that can be processed in order to
obtain information about how long (relatively) Asterisk spends in each function. Use
of the –pg flag is not recommended for a normal build, but it may be useful during
development. To enable profiling information, replace the –g in the following line
with –pg:

DEBUG=-g

Specifying where to install Asterisk after compiling

You can change the directory where Asterisk is installed by specifying a path on the
following line:

INSTALL_PREFIX=

Changing the staging directory

The staging directory is where Asterisk temporarily copies its files during the install
process. You may want the files to be copied to a directory such as /tmp/asterisk/. If
no staging directory is specified (the default), Asterisk will use the source directory.
To specify a staging directory, enter the desired directory on this line:

DESTDIR=

Compiling on VIA motherboards

On VIA-based motherboards, you need to set the processor to i586. If Asterisk
detects the processor as i686, you may get random core dumps. To force Asterisk to
compile using i586, remove the comment from the following PROC line in the Make-
file (line 81, at the time of this writing):

Pentium & VIA processors optimize
PROC=i586

Using Precompiled Binaries
While the documented process of installing Asterisk expects you to compile the
source code yourself, there are Linux distributions (such as Debian) that include pre-
compiled Asterisk binaries. Failing that, you may be able to install Asterisk with the
package managers that those distributions of Linux provide (such as apt-get for

,ch03.20288 Page 45 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

46 | Chapter 3: Installing Asterisk

Debian and portage for Gentoo). However, you may also find that many of these pre-
built binaries are quite out of date and do not follow the same furious development
cycle as Asterisk.

Finally, there do exist basic, precompiled Asterisk binaries that can be downloaded
and installed in whatever Linux distribution you have chosen. However, the use of
precompiled binaries doesn’t really save much time, and we have found that compil-
ing Asterisk with each install is not a very cumbersome task. We believe that the best
way to install Asterisk is to compile from the source code, so we won’t discuss pre-
built binaries very much in this book. In the next chapter, we’ll look at how to ini-
tially configure Asterisk and several kinds of channels.

Installing Additional Prompts
The asterisk-sounds package contains many useful professionally recorded prompts.
It is highly recommended that you install it now, as we will be using some of the
prompts from this package in later chapters. To do so, run the following commands:

cd /usr/src/asterisk-sounds
make install

Updating Your Source Code
Instead of deleting the sources and downloading the entire tree every time you want
to update, you can update just the files that have changed since the last revision. To
do this, change into the directory containing the files you want to update and run the
make update command:

Other Useful Add-ons
The asterisk-addons package contains code to allow the storage of Call Detail Records
(CDRs) to a MySQL database and to natively play MP3s, as well as an interpreter for load-
ing Perl code into memory for the life of an Asterisk process. Programs are placed into
asterisk-addons when there are licensing issues preventing them from being implemented
directly into the Asterisk source code, or when they are not yet ready for primetime.

The g729/ directory contains the code and registration program for the proprietary
G.729 codec. Even if your end devices have the G.729 codec installed, in order to allow
the phones to communicate with Asterisk using G.729 (e.g., in voicemail or to allow
attended transfers), you must purchase a license. Licenses for the codec can be pur-
chased online from Digium and activated with the registration program contained in
the g729/ directory.

,ch03.20288 Page 46 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Common Compiling Issues | 47

cd /usr/src/asterisk/
make update
make clean
make upgrade

Note that this will work only with code obtained via the CVS method (see “make
update,” earlier in this chapter). The make upgrade command is used only in the
Asterisk source directory. In other directories, use make install.

Common Compiling Issues
There are many common compiling issues that users often run into. Here are some of
the more common problems, and how to resolve them.

Asterisk
First, let’s take a look at some of the errors you may encounter when compiling
Asterisk.

C compiler cannot create executables

If you receive the following error while attempting to compile Asterisk, you must
install the gcc compiler and its dependencies:

checking whether the C compiler (gcc) works... no
configure: error: installation or configuration problem: C compiler cannot create
executables.
make: *** [editline/libedit.a] Error 1

The following packages are required for gcc:

• gcc

• glibc-kernheaders

• cpp

• binutils

• glibc-headers

• glibc-devel

These can be installed manually, by copying the files off of your distribution disks, or
through the yum package manager, with the command yum install gcc.

bison: command not found

The following error may be encountered if the bison parser, which is required for
parsing expressions in the extensions.conf file, is not found:

bison ast_expr.y –name-prefix=ast_yy –o ast_expr.c
make: bison: Command not found
make: *** [ast_expr.c] Error 127

,ch03.20288 Page 47 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

48 | Chapter 3: Installing Asterisk

The following files are required in order to install Asterisk; they can be installed with
the yum install bison command:

• bison

• m4

/usr/bin/ld: cannot find –lssl

The OpenSSL development packages are required by Asterisk within the res_crypto.so
module for RSA key checks performed by the IAX2 protocol. If the OpenSSL devel-
opment packages are not installed, the following error will occur:

/usr/bin/ld: cannot find –lssl
collect2: ld returned 1 exit status
make: *** [asterisk] Error 1

To install the OpenSSL development library, you’ll require the following dependencies:

• openssl-devel

• e2fsprogs-devel

• zlib-devel

• krb5-devel

• krb5-libs

You can use the yum install openssl-devel command to install these files.

rpmbuild: command not found

To use the make rpm command, you must have the Red Hat Package Manager (RPM)
development package installed. The following error will be encountered if it is
absent:

make[1]: Leaving directory `/usr/src/asterisk-1.0.3'
/bin/sh: line 1: rpmbuild: command not found
make: *** [_ _rpm] Error 127

You can install the build environment with yum install rpmbuild.

Zaptel
You may also run into errors when compiling Zaptel. Here are some of the most
commonly occurring problems, and what to do about them.

make: cc: Command not found

You will receive the following error if you attempt to build Zaptel without the gcc
compiler installed:

make: cc: Command not found
make: *** [gendigits.o] Error 127

,ch03.20288 Page 48 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Common Compiling Issues | 49

Be sure to install gcc and its dependencies. For more information, see “C compiler
cannot create executables” in the previous section.

FATAL: Module wctdm/fxs/fxo not found

The TDM400P cards require the PCI bus to be Version 2.2. If you attempt to load
the Zapata telephony drivers with an older version, you may get the following errors:

• When attempting to load the wctdm driver, you may see this error:
FATAL: Module wctdm not found

• When attempting to load the wctdm or wcfxo driver, you may see an error such
as this:

ZT_CHANCONFIG failed on channel 1: No such device or address (6)
FATAL: Module wctdm not found

The only way to resolve these errors is to use a newer motherboard that supports PCI
Version 2.2.

You may also encounter these errors if the power has not been
attached to the Molex connector found on the TDM400P card.

Unresolved symbol link when loading ztdummy

The ztdummy driver requires that a UHCI USB controller be available on Linux 2.4
kernels (the USB controller is not a requirement on Linux 2.6 kernels, because they
are capable of generating the 1-kHz timing reference). There exists a secondary kind
of controller, known as OHCI, which is not compatible with the ztdummy driver. If
the UHCI USB controller is not accessible on Linux 2.4 kernels, the following error
will occur:

/lib/modules/2.4.22/misc/ztdummy.o: /lib/modules/2.4.22/misc/ztdummy.o: unresolved
symbol unlink_td
/lib/modules/2.4.22/misc/ztdummy.o: /lib/modules/2.4.22/misc/ztdummy.o: unresolved
symbol alloc_td
/lib/modules/2.4.22/misc/ztdummy.o: /lib/modules/2.4.22/misc/ztdummy.o: unresolved
symbol delete_desc
/lib/modules/2.4.22/misc/ztdummy.o: /lib/modules/2.4.22/misc/ztdummy.o: unresolved
symbol uhci_devices
/lib/modules/2.4.22/misc/ztdummy.o: /lib/modules/2.4.22/misc/ztdummy.o: unresolved
symbol uhci_interrupt
/lib/modules/2.4.22/misc/ztdummy.o: /lib/modules/2.4.22/misc/ztdummy.o: unresolved
symbol fill_td
/lib/modules/2.4.22/misc/ztdummy.o: /lib/modules/2.4.22/misc/ztdummy.o: unresolved
symbol insert_td_horizontal
/lib/modules/2.4.22/misc/ztdummy.o: insmod /lib/modules/2.4.22/misc/ztdummy.o failed
/lib/modules/2.4.22/misc/ztdummy.o: insmod ztdummy failed

,ch03.20288 Page 49 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

50 | Chapter 3: Installing Asterisk

You can verify that you have the correct style of USB controller and its associated
drivers with the lsmod command:

lsmod
Module Size Used by
usb_uhci 26412 0
usbcore 79040 1 [hid usb-uhci]

As you can see in the example above, you are looking to make sure that the usbcore
and usb_uhci modules are loaded. If these modules are not loaded, be sure that USB
has been activated within your BIOS and that the modules exist and are being
loaded.

If the USB drivers are not loaded, you can still check which type of USB controller
you have with the dmesg command:

dmesg | grep –i usb

To verify that you indeed have a UHCI USB controller, look for the following lines:

uhci_hcd 0000:00:04.2: new USB bus registered, assigned bus number 1
hub 1-0:1.0: USB hub found
uhci_hcd 0000:00:04.3: new USB bus registered, assigned bus number 2
hub 2-0:1.0: USB hub found

Depmod errors during compilation

If you experience depmod errors during compilation, you more than likely don’t have
a symbolic link to your Linux kernel sources. If you don’t have your Linux kernel
sources installed, retrieve the sources for your installed kernel, install them, and cre-
ate a symbolic link against /usr/src/linux-2.4. The following is an example of a depmod
error:

depmod: *** Unresolved symbols in /lib/modules/2.4.22/kernel/drivers/block/loop.o

Loading Zaptel Modules
In this section, we’ll take a quick look at how to load the zaptel and ztdummy mod-
ules. The zaptel module does not require any configuration if it’s being used only for
the ztdummy module. If you plan on loading the ztdummy module as your timing
source (and thus, you will not be running any PCI hardware in your system), now is
a good time to load both drivers.

Systems Running udevd
In the early days of Linux, the system’s /dev/ directory was populated with a list of
devices with which the system could potentially interact. At the time, nearly 18,000
devices were listed. That all changed when devfs was released, allowing dynamic
creation of devices that are active within the system. Some of the recently released

,ch03.20288 Page 50 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Loading Zaptel Modules | 51

distributions have incorporated the udev daemon into their systems to dynamically
populate /dev/ with device nodes.

To allow Zaptel and other device drivers to access the PCI hardware installed in your
system, you must add some rules. Using your favorite text editor, open up your
udevd rules file. On Fedora Core 3, for example, this file is located at /etc/udev/rules.
d/50-udev.rules. Add the following lines to the end of your rules file:

Section for zaptel device
KERNEL="zapctl", NAME="zap/ctl"
KERNEL="zaptimer", NAME="zap/timer"
KERNEL="zapchannel", NAME="zap/channel"
KERNEL="zappseudo", NAME="zap/pseudo"
KERNEL="zap[0-9]*", NAME="zap/%n"

Save the file and reboot your system for the settings to take effect.

Loading Zaptel
The zaptel module must be loaded before any of the other modules are loaded and
used. Note that if you will be using the zaptel module with PCI hardware, you must
configure /etc/zaptel.conf before you load it. (We will discuss how to configure zaptel.
conf for use with hardware in Chapter 4.) If you are using zaptel only to access
ztdummy, you can load it with the modprobe command, as follows:

modprobe zaptel

If all goes well, you shouldn’t see any output. To verify that the zaptel module loaded
successfully, use the lsmod command. You should be returned a line showing the
zaptel module and the amount of memory it is using:

lsmod | grep zaptel
zaptel 201988 0

Loading ztdummy
The ztdummy module is an interface to a device that provides timing, which in turn
allows Asterisk to provide timing to various applications and functions that require
it. Use the modprobe command to load the ztdummy module after zaptel has been
loaded:

modprobe ztdummy

If ztdummy loads successfully, no output will be displayed. To verify that ztdummy is
loaded and is being used by zaptel, use the lsmod command. The following output is
from a computer running the 2.6 kernel:

lsmod | grep ztdummy
Module Size Used by
ztdummy 3796 0
zaptel 201988 1 ztdummy

,ch03.20288 Page 51 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

52 | Chapter 3: Installing Asterisk

If you happen to be running a 2.4 kernel-based computer, your output from lsmod
will show that ztdummy is using the usb-uhci module:

lsmod | grep ztdummy
Module Size Used by
ztdummy 3796 0
zaptel 201988 0 ztdummy
usb-uhci 24524 0 ztdummy

Loading libpri
The libpri libraries do not need to be loaded like modules. Asterisk looks for libpri at
compile time and configures itself to use the libraries if they are found.

Loading Asterisk
Asterisk can be loaded in a variety of ways. The easiest way is to start Asterisk by
running the binary file directly from the Linux command-line interface. If you are
running a system that uses the init.d scripts, you can easily start and restart Asterisk
that way as well. However, the preferred way of starting Asterisk is via the safe_aster-
isk script.

CLI Commands
The Asterisk binary is, by default, located at /usr/sbin/asterisk. If you run /usr/sbin/
asterisk, it will be loaded as a daemon. There are also a few switches you should be
aware of that allow you to (re)connect to the Asterisk CLI, set the verbosity of CLI
output, and allow core dumps if Asterisk crashes (for debugging with gdb). To
explore the full range of options, run Asterisk with the –h switch:

/usr/sbin/asterisk –h

Here is a list of the most commonly used options:

-c
Console. This allows you to connect to the Asterisk CLI.

-v
Verbosity. This is used to set the amount of output for CLI debugging.

-g
Core dump. If Asterisk were to crash unexpectedly, this would cause a core file
to be created for later tracing with gdb.

-r
Remote. This is used to reconnect remotely to an already running Asterisk pro-
cess. (The process is remote from the standpoint of the console connecting to it

,ch03.20288 Page 52 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Loading Asterisk | 53

but is actually a local process on the machine. This has nothing to do with
connecting to a remote process over a network using a protocol such as IP, as
this is not supported.)

-rx "restart now"
Execute. Using this command in combination with –r allows you to execute a
CLI command without having to connect to the CLI and type it manually.

Let’s look at some examples. To start Asterisk and connect to the CLI with a verbos-
ity level of 3, use the following command:

/usr/sbin/asterisk –cvvv

If the Asterisk process is already running (for example, if you started Asterisk with
/usr/sbin/asterisk), instead use the reconnect switch, like so:

/usr/sbin/asterisk –vvvr

If you want Asterisk to dump a core file after a crash, you can use the –g switch when
starting Asterisk:

/usr/sbin/asterisk –g

To execute a command without connecting to the CLI and typing it (perhaps for use
within a script), you can use the –x switch in combination with the –r switch:

/usr/sbin/asterisk –rx "restart now"

If you are experiencing crashes and would like to output to a debug file, use the fol-
lowing command:

/usr/sbin/asterisk –vvvvvvvvvc | tee /tmp/debug.log

Red Hat–Style Initialization Script
If you ran the make config command earlier (or manually copied the initialization
scripts), you can start and restart Asterisk with the following commands:

/etc/rc.d/init.d/asterisk start
/etc/rc.d/init.d/asterisk stop

The safe_asterisk Script
The main purpose of the safe_asterisk script is to dump a core file if Asterisk fails and
to automatically restart it. There is also a notify option within the script, which, if
set, will send an email letting you know that Asterisk died unexpectedly. An added
benefit of the script is that it will load the Asterisk CLI on terminal interface 9 (by
default; this is configurable), so you can easily switch to that window to monitor
your Asterisk system.

,ch03.20288 Page 53 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

54 | Chapter 3: Installing Asterisk

The default location of the safe_asterisk script is /usr/sbin/safe_asterisk, and it can be
executed as such. Let’s review the various options contained in the safe_asterisk
script:

CLIARGS="$*" # Grab any args passed to safe_asterisk
TTY=9 # TTY (if you want one) for Asterisk to run on
CONSOLE=yes # Whether or not you want a console
#NOTIFY=ben@alkaloid.net # Email address for crash notifications

The first line simply allows you to pass arguments to the safe_asterisk script from the
Linux CLI; it should not be edited directly. TTY=9 specifies the Linux console on
which to run the Asterisk CLI output. You can disable this feature by specifying
CONSOLE=no. If you would like to be notified if Asterisk dies suddenly and requires a
restart, uncomment the NOTIFY line and replace ben@alkaloid.net with your email
address. Note that the crash notifications are sent with the mail command, so your
system must be set up to process and send email.

Directories Used by Asterisk
Asterisk uses several directories on a Linux system to manage the various aspects of
the system, such as voicemail recordings, voice prompts, and configuration files.
This section discusses the necessary directories, all of which are created during
installation and configured in the asterisk.conf file.

/etc/asterisk/
The /etc/asterisk/ directory contains the Asterisk configuration files. One file, how-
ever—zaptel.conf—is located in the /etc/ directory. The Zaptel hardware was origi-
nally designed by Jim Dixon of the Zapata Telephony Group as a way of bringing
reasonable and affordable computer telephony equipment to the world. Asterisk
makes use of this hardware, but any other software can also make use of the Zaptel
hardware and drivers. Consequently, the zaptel.conf configuration file is not directly
located in the /etc/asterisk/ directory.

/usr/lib/asterisk/modules/
The /usr/lib/asterisk/modules/ directory contains all the Asterisk loadable modules.
Within this directory are the various applications, codecs, formats, and channels
used by Asterisk. By default, Asterisk loads all of these modules at startup. You can
disable any modules you are not using in the modules.conf file, but be aware that cer-
tain modules are required by Asterisk or are dependencies of other modules.
Attempting to load Asterisk without these modules will cause an error at startup.

,ch03.20288 Page 54 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Directories Used by Asterisk | 55

/var/lib/asterisk
The /var/lib/asterisk/ directory contains the astdb file and a number of subdirecto-
ries. The astdb file contains the local Asterisk database information, which is some-
what like the Microsoft Windows Registry. The Asterisk database is a simple
implementation based on v1 of the Berkeley database. The db.c file in the Asterisk
source states that this version was chosen for the following reason: “DB3 implemen-
tation is released under an alternative license incompatible with the GPL. Thus in
order to keep Asterisk licensing simplistic, it was decided to use version 1 as it is
released under the BSD license.”

The subdirectories within /var/lib/asterisk/ include:

agi-bin/
The agi-bin/ directory contains your custom scripts, which can interface with
Asterisk via the various built-in AGI applications. For more information about
AGI, see Chapter 8.

 firmware/
The firmware/ directory contains firmware for various Asterisk-compatible
devices. It currently contains only the iax/ subdirectory, which holds the binary
firmware image for Digium’s IAXy.

images/
Applications that communicate with channels supporting graphical images look
in the images/ directory. Most channels do not support the transmission of
images, so this directory is rarely used. However, if more devices that support
and make use of graphical images are released, this directory will become more
relevant.

keys/
Asterisk can use a public/private key system to authenticate peers connecting to
your box via an RSA digital signature. If you place a peer’s public key in your
keys/ directory, that peer can be authenticated by channels supporting this
method (such as the IAX2 channels). The private key is never distributed to the
public. The reverse is also true: you can distribute your public key to your peers,
allowing you to be authenticated with the use of your private key. Both the pub-
lic and private keys—ending in the .pub and .key file extensions, respectively—
are stored in the keys/ directory.

mohmp3/
When you configure Asterisk for Music on Hold, applications utilizing this fea-
ture look for their MP3 files in the mohmp3/ directory. Asterisk is a bit picky
about how the MP3 files are formatted, so you should use constant bitrate (CBR)
encoding and strip the ID3 tags from your files.

,ch03.20288 Page 55 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

56 | Chapter 3: Installing Asterisk

 sounds/
All of the available voice prompts for Asterisk reside in the sounds/ directory.
The contents of the basic prompts included with Asterisk are in the sounds.txt
file located in your Asterisk source code directory. Contents of the additional
prompts are located in the sounds-extra.txt file in the directory to which you
extracted the asterisk-sounds package earlier in this chapter.

/var/spool/asterisk/
The Asterisk spool directory contains several subdirectories, including outgoing/,
qcall/, tmp/, and voicemail/ (see Figure 3-2). Asterisk monitors the outgoing and qcall
directories for text files containing call request information. These files allow you to
generate a call simply by copying or moving the correctly structured file into the out-
going/ directory.

The old (now deprecated) qcall method of generating calls utilized a single line of
text within the call file. Call files for use within the qcall directory took the form of:

Dialstring Caller-ID Extension Maxsecs [Identifier] [Required-response]

This rather limited what you could do with the call file, and what kinds of informa-
tion you could pass to Asterisk. Thus, a new spooling method was developed in
Asterisk, using the outgoing directory. Call files being placed into this directory can

Figure 3-2. /var/spool/asterisk/ directory structure

var

spool

asterisk

outgoing

qcall

tmp

voicemail

,ch03.20288 Page 56 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Conclusion | 57

contain much more valuable information, such as the Context, Extension, and Prior-
ity where the answered call should start, or simply the application and its argu-
ments. You can also set variables and specify an account code for Call Detail
Records. More information about the use of call files is presented in Chapter 9.

The tmp/ directory is used, funny enough, to hold temporary information. Certain
applications may require a place to write files to before copying the complete files to
their final destinations. This prevents two processes from trying to write to and read
from a file at the same time.

All voicemail and user greetings are contained within the voicemail/ directory. Exten-
sions configured in voicemail.conf that have been logged into at least once are cre-
ated as subdirectories of voicemail/.

/var/run/
The /var/run/ directory contains the process ID (pid) information for all active pro-
cesses on the system, including Asterisk (as specified in the asterisk.conf file). Note
that /var/run/ is OS-dependent and may differ.

/var/log/asterisk/
The /var/log/asterisk/ directory is where Asterisk logs information. You can control
the type of information being logged to the various files by editing the logger.conf file
located in the /etc/asterisk/ directory. Basic configuration of the logger.conf file is cov-
ered in Appendix E.

/var/log/asterisk/cdr-csv
The /var/log/asterisk/cdr-csv directory is used to store the CDRs in comma-separated
value (CSV) format. By default information is stored in the Master.csv file, but indi-
vidual accounts can store their own CDRs in separate files with the use of the
accountcode option (see Appendix A for more information).

Conclusion
In this chapter, we have reviewed the procedures for obtaining, compiling, and
installing Asterisk and the associated packages. In the following chapter, we will
touch on the initial configuration of your system with regard to various communica-
tions channels, such as analog devices attached to FXS and FXO ports, SIP channels,
and IAX2 endpoints.

,ch03.20288 Page 57 Wednesday, August 31, 2005 4:54 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

58

Chapter 4CHAPTER 4

Initial Configuration of Asterisk

Perseverance is the hard work you do after you get
tired of doing the hard work you already did.
—Newt Gingrich

The purpose of this chapter is to guide the user through the configuration of four chan-
nels: a Foreign eXchange Office (FXO) channel, a Foreign eXchange Station (FXS)
channel, a Session Initiation Protocol (SIP) channel, and an Inter-Asterisk eXchange
protocol (IAX)* channel. The purpose is not to give an exhaustive survey of all channel
types or topologies, but rather to provide a base platform on which to build your tele-
communications system. Further scenarios and channel configuration details can be
found in Appendix D. We start by exploring the basic configuration of analog inter-
faces such as FXS and FXO ports with the use of a Digium Dev-Lite kit. We’ll then
configure two Voice over Internet Protocol (VoIP) interfaces: a local SIP channel con-
nected to a soft phone, and a connection to Free World Dialup via IAX.

Once you’ve worked through this chapter, you will have a basic system consisting of
many useful interfaces, and you will be ready to learn more about the extensions.conf
file (discussed further in Chapter 5), which contains the instructions Asterisk needs
to build the dialplan.

What Do I Really Need?
The asterisk character (*) is used as a wildcard in many different applications. It is
the perfect name for this PBX for many reasons, one of which is the enormous num-
ber of interface types to which Asterisk can connect. These include:

• Analog interfaces, such as your telephone line and analog telephones

• Digital circuits, such as T-1 and E-1 lines

• VoIP protocols such as SIP and IAX

* Officially, the current version is IAX2, but all support for IAX1 has been dropped, so whether you say “IAX”
or “IAX2,” it is expected that you are talking about Version 2.

,ch04.20428 Page 58 Wednesday, August 31, 2005 4:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Working with Interface Configuration Files | 59

Asterisk doesn’t need any specialized hardware—not even a sound card. Channel
cards that connect Asterisk to analog phones or phone lines are available, but not
essential. You can connect to Asterisk using the soft phones that are available for
Windows, Linux, and other operating systems without using a special hardware
interface. You can also use any IP phone that supports either SIP or IAX2. On the
other side, if you don’t connect directly to an analog phone line from your central
office, you can route your calls over the Internet to a telephony service provider.

Working with Interface Configuration Files
In this chapter, we’re finally going to “get our hands dirty” and start building an
Asterisk configuration. For the first few sections on FXO and FXS channels, we’ll
assume that you have the Digium Dev-Lite kit with one FXO and one FXS interface,
which allows you to connect to an analog phone line (FXO) and to an analog phone
(FXS). Note that this hardware interface isn’t necessary; if you want to build an IP-
only configuration, you can skip to the section on configuring SIP.

The configuration we do in this chapter won’t be particularly useful on its own, but
it will be a kernel to build on. We’re going to touch on the following files:

zaptel.conf
Here, we’ll do low-level configuration for the hardware interface. We’ll set up
one FXO channel and one FXS channel.

zapata.conf
In this file, we’ll configure Asterisk’s interface to the hardware.

extensions.conf
The dialplans we create will be extremely primitive, but they will prove that the
system is working.

sip.conf
This is where we’ll configure the SIP protocol.

iax.conf
This is where we’ll configure incoming and outgoing IAX channels.

In the following sections, you will be editing several configuration files. You’ll have
to reload these files for your changes to take effect. After you edit the zaptel.conf file,
you will need to reload the configuration for the hardware with /sbin/ztcfg –vv (you
may omit the –vv if you don’t need verbose output). Changes made in zapata.conf
will require a reload from the Asterisk console; however, changing signaling meth-
ods requires a restart. You will need to perform a reload chan_iax2.so and a reload
chan_sip.so after editing the iax.conf and sip.conf files, respectively.

,ch04.20428 Page 59 Wednesday, August 31, 2005 4:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

60 | Chapter 4: Initial Configuration of Asterisk

FXO and FXS Channels
The difference between an FXO channel and an FXS channel is simply which end of
the connection provides the dial tone. An FXO port does not generate a dial tone; it
accepts one. A common example is the dial tone provided by your phone company.
An FXS port provides both the dial tone and ringing voltage to alert the station user
of an inbound call. Both interfaces provide bidirectional communication (i.e., com-
munication that is transmitted and received in both directions simultaneously).

If your Asterisk server has a compatible FXO port, you can plug a telephone line
from your telephone company (or “telco”) into this port. Asterisk can then use the
telco line to place and receive telephone calls. By that same token, if your Asterisk
server has a compatible FXS port, you may plug an analog telephone into your Aster-
isk server, so that Asterisk may call the phone and you may place calls.

Ports are defined in the configuration by the signaling they use, as opposed to the
physical type of port they are. For instance, a physical FXO port will be defined in
configuration with FXS signaling, and an FXS port will be defined with FXO signal-
ing. This can be confusing until you understand the reasons for it. FX_ cards are
named not according to what they are, but rather according to what is connected to
them. An FXS card, therefore, is a card that connects to a station. Since that is so,
you can see that in order to do its job, an FXS card must behave like a central office
and use FXO signaling. Similarly, an FXO card connects to a central office (CO),
which means it will need to behave like a station and use FXS signaling. The modem
in your computer is a classic example of an FXO device.

The older X100P card used a Motorola chipset, and the X101P (which
Digium sold before completely switching to the TDM400P) is based
on the Ambient/Intel MD3200 chipset. These cards are modems with
drivers adapted to utilize the card as a single FXO device (the tele-
phone interface cannot be used as an FXS port). Support for the
X101P card has been dropped in favor of the TDM series of cards. Use
of these cards (or their clones) is not recommended in production
environments.

Determining the FXO and FXS Ports on Your TDM400P
Figure 4-1 contains a picture of a TDM400P with an FXS module and an FXO mod-
ule. You can’t see the colors, but module 1 is a green FXS module and module 2 is an
orange/red FXO module. In the bottom-right corner of the picture is the Molex con-
nector, where power is supplied from computer’s power supply.

Plugging an FXS port (the green module) into the PSTN may destroy
the module and the card!

,ch04.20428 Page 60 Wednesday, August 31, 2005 4:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Configuring an FXO Channel | 61

Be sure to connect your computer’s power supply to the Molex con-
nector on the TDM400P if you have FXS modules, as it is used to gen-
erate the voltage to produce ringing on the phone. The Molex
connector is not required if you have only FXO modules.

Configuring an FXO Channel
We’ll start by configuring an FXO channel. First we’ll configure the Zaptel hard-
ware, and then the Zapata hardware. We’ll set up a very basic dialplan, and we’ll
show you how to test the channel.

Zaptel Hardware Configuration
The zaptel.conf file located in /etc/ is used to configure your hardware. The following
minimal configuration defines an FXO port with FXS signaling:

fxsks=2
loadzone=us
defaultzone=us

Figure 4-1. A TDM400P with an FXS module (1 across) and an FXO module (2 across)

1
2
3
4

1 2 3 4

,ch04.20428 Page 61 Wednesday, August 31, 2005 4:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

62 | Chapter 4: Initial Configuration of Asterisk

In the first line, in addition to indicating whether we are using FXO or FXS signal-
ing, we specify one of the following protocols for channel 2:

• Loop start (ls)

• Ground start (gs)

• Kewlstart (ks)

The difference between loop start and ground start has to do with how the equip-
ment requests a dial tone: a ground start circuit signals the far end that it wants a dial
tone by momentarily grounding one of the leads; a loop start circuit uses a short to
request a dial tone. Though not common for new installations, analog ground start
lines still exist in many areas of the country.* For example, ground start lines are pre-
dominately used to reduce a condition known as “glare”† that is associated with loop
start lines and PBXs with high call volumes. All home lines (and analog telephones/
modems/faxes) in North America use loop start signaling. Kewlstart is in fact the
same as loop start, except that it has greater intelligence and is thus better able to
detect far-end disconnects.‡ Kewlstart is the preferred signaling protocol for analog
circuits in Asterisk.

To configure a signaling method other than kewlstart, replace the ks in fxsks with
either ls or gs (for loop start or ground start, respectively).

loadzone configures the set of indications (as configured in zonedata.c) to use for the
channel. The zonedata.c file contains information about all the various sounds that a
phone system makes in a particular country: dial tone, ringing cycles, busy tone, and
so on. When you apply a loaded tone zone to a Zap channel, that channel will mimic
the indications for the specified country. Different indication sets can be configured
for different channels. The defaultzone is used if no zone is specified for a channel.

After configuring zaptel.conf, you can load the drivers for the card. modprobe is used
to load modules for use by the Linux kernel. For example, to load the wctdm driver,
you would run:

modprobe wctdm

* Yes, there is such a thing as ground start signaling on channelized T-1s, but that has nothing to do with an
actual ground condition on the circuit (which is entirely digital).

† When a call is initiated from one end of a circuit at the same approximate time a call is initiated from the
opposite end of the circuit.

‡ A far-end disconnect happens when the far end hangs up. In an unsupervised circuit, there is no method of
telling the near end that the call has ended. If you are on the phone this is no problem, since you will know
the call has ended and will manually hang up your end. If, however, your voicemail system is recording a
message, it will have no way of knowing that the far end has terminated and will thus keep recording silence,
or even the dial tone or reorder tone. Kewlstart can detect these conditions and disconnect the circuit.

,ch04.20428 Page 62 Wednesday, August 31, 2005 4:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Configuring an FXO Channel | 63

If the drivers load without any output, they have loaded successfully.* You can verify
that the hardware and ports were loaded and configured correctly with the use of the
ztcfg program:

/sbin/ztcfg –vv

The channels that are configured and the signaling method being used will be dis-
played. For example, a TDM400P with one FXO module has the following output:

Zaptel Configuration
======================

Channel map:

Channel 02: FXS Kewlstart (Default) (Slaves: 02)

1 channels configured.

If you receive the following error, you have configured the channel for the wrong sig-
naling method:

ZT_CHANCONFIG failed on channel 2: Invalid argument (22)
Did you forget that FXS interfaces are configured with FXO signalling
and that FXO interfaces use FXS signalling?

To unload drivers from memory, use the rmmod (remove module) command, like so:

rmmod wctdm

The zttool program is a diagnostic tool used to determine the state of your hardware.
After running it, you will be presented with a menu of all installed hardware. You
can then select the hardware and view the current state. A state of “OK” means the
hardware is successfully loaded:

Alarms Span
OK Wildcard TDM400P REV E/F Board 1

Zapata Hardware Configuration
Asterisk uses the zapata.conf file to determine the settings and configuration for tele-
phony hardware installed in the system. The zapata.conf file also controls the vari-
ous features and functionality associated with the hardware channels, such as Caller
ID, call waiting, echo cancellation, and a myriad of other options.

When you configure zaptel.conf and load the modules, Asterisk is not aware of any-
thing you’ve configured. The hardware doesn’t have to be used by Asterisk; it could
very well be used by another piece of software that interfaces with the Zaptel

* It is generally safe to assume that the modules have loaded successfully, but to view the debugging output
when loading the module, check the console output (by default this is located on TTY terminal 9, but this is
configurable in the safe_asterisk script—see the previous chapter for details).

,ch04.20428 Page 63 Wednesday, August 31, 2005 4:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

64 | Chapter 4: Initial Configuration of Asterisk

modules. You tell Asterisk about the hardware and control the associated features via
zapata.conf:

[trunkgroups]
; define any trunk groups

[channels]
; hardware channels
; default
usecallerid=yes
hidecallerid=no
callwaiting=no
threewaycalling=yes
transfer=yes
echocancel=yes
echotraining=yes

; define channels
context=incoming ; Incoming calls go to [incoming] in extensions.conf
signalling=fxs_ks ; Use FXS signalling for an FXO channel
channel => 2 ; PSTN attached to port 2

The [trunkgroups] section is for NFAS and GR-303 connections, and it won’t be dis-
cussed in this book. If you require this type of functionality, see the zapata.conf.sam-
ple file for more information.

The [channels] section determines the signaling method for hardware channels and
their options. Once an option is defined, it is inherited down through the rest of the
file. A channel is defined using channel =>, and each channel definition inherits all
the options defined above that line. If you wish to configure different options for dif-
ferent channels, remember that the options should be configured before the channel
=> definition.

We’ve enabled Caller ID with usecallerid=yes and specified that it will not be hidden
for outgoing calls with hidecallerid=no. Call waiting is deactivated on an FXO line
with callwaiting=no. Enabling three-way calling with threewaycalling=yes allows an
active call to be placed on hold with a hook switch flash (discussed in Chapter 7) to
suspend the current call. You may then dial a third party and join them to the conver-
sation with another hook switch. The default is to not enable three-way calling.

Allowing call transfer with a hook switch is accomplished by configuring
transfer=yes; it requires that three-way calling be enabled. The Asterisk echo cancel-
ler is used to remove the echo that can be created on analog lines. You can enable the
echo canceller with echocancel=yes. The echo canceller in Asterisk requires some
time to learn the echo, but you can speed this up by enabling echo training
(echotraining=yes). This tells Asterisk to send a tone down the line at the start of a
call to measure the echo, and therefore learn it more quickly.

When a call comes in on an FXO interface, you will want to perform some action.
The action to be performed is configured inside a block of instructions called a

,ch04.20428 Page 64 Wednesday, August 31, 2005 4:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Configuring an FXS Channel | 65

context. Incoming calls on the FXO interface are directed to the incoming context
with context=incoming. The instructions to perform inside the context are defined
within extensions.conf.

Finally, since an FXO channel uses FXS signaling, we define it as such with
signalling=fxs_ks.

Dialplan Configuration
The following minimal dialplan makes use of the Echo() application to verify that
bidirectional communications for the channel are working:

[incoming]
; incoming calls from the FXO port are directed to this context from zapata.conf
exten => s,1,Answer()
exten => s,2,Echo()

Whatever you say, the Echo() application will relay back to you.

Dialing in
Now that the FXO channel is configured, let’s test it. Run the zttool application and
connect your PSTN line to the FXO port on your TDM400P. Once you have a phone
line connected to your FXO port, you can watch the card come out of a RED alarm.

Now dial the PSTN number from another external phone (such as a cell phone). Aster-
isk will answer the call and execute the Echo() application. If you can hear your voice
being reflected back, you have successfully installed and configured your FXO channel.

Configuring an FXS Channel
The configuration of an FXS channel is similar to that of an FXO channel. Let’s take
a look.

Zaptel Hardware Configuration
The following is a minimal configuration for an FXS channel on a TDM400P. The
configuration is identical to the FXO channel configuration above, with the addition
of fxoks=1.

Recall from our earlier discussion that the opposite type of signaling is used for FXO
and FXS channels, so we will be configuring FXO signaling for our FXS channel. In
the example below we are configuring channel 1 to use FXO signaling, with the
kewlstart signaling protocol:

fxoks=1
fxsks=2
loadzone=us
defaultzone=us

,ch04.20428 Page 65 Wednesday, August 31, 2005 4:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

66 | Chapter 4: Initial Configuration of Asterisk

After loading the drivers for your hardware, you can verify their state with the use of
/sbin/ztcfg –vv:

Zaptel Configuration
======================

Channel map:

Channel 01: FXO Kewlstart (Default) (Slaves: 01)
Channel 02: FXS Kewlstart (Default) (Slaves: 02)

2 channels configured.

Zapata Hardware Configuration
The following configuration is identical to that for the FXO channel, with the addition
of a section for our FXS port and of the line immediate=no. The context for our FXS port
is internal, the signaling is fxoks (kewlstart), and the channel number is set to 1.

FXS channels can be configured to perform one of two different actions when a
phone is taken off the hook. The most common (and often expected) option is for
Asterisk to produce a dial tone and wait for input from the user. This action is
configured with immediate=no. The alternative action is for Asterisk to automati-
cally perform a set of instructions configured in the dialplan instead of producing
a dial tone, which you indicate by configuring immediate=yes.* The instructions to
be performed are found in the context configured for the channel and will match
the s extension (both of these topics will be discussed further in the following
chapter).

Here’s our new zapata.conf:

[trunkgroups]
; define any trunk groups

[channels]
; hardware channels
; default
usecallerid=yes
hidecallerid=no
callwaiting=no
threewaycalling=yes
transfer=yes
echocancel=yes
echotraining=yes
immediate=no

* Also referred to as the BatPhone method, and more formally known as an Automatic Ringdown or Private Line
Automatic Ringdown (PLAR) circuit. This method is commonly used at rental car counters and airports.

,ch04.20428 Page 66 Wednesday, August 31, 2005 4:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Configuring SIP | 67

; define channels
context=internal ; Uses the [internal] context in extensions.conf
signalling=fxo_ks ; Use FXO signalling for an FXS channel
channel => 1 ; Telephone attached to port 1

context=incoming ; Incoming calls go to [incoming] in extensions.conf
signalling=fxs_ks ; Use FXS signalling for an FXO channel
channel => 2 ; PSTN attached to port 2

Dialplan Configuration
To test our newly created Zap extension, we need to create a basic dialplan. The fol-
lowing dialplan contains a context called internal. This is the same context name
that we configured in zapata.conf for channel 1. When we configure
context=internal in zapata.conf, we are telling Asterisk where to look for instruc-
tions when a user presses digits on his telephone. In this case, the only extension
number that will work is 611. When you dial 611 on your telephone, Asterisk will
execute the Echo() application so that when you talk into the phone whatever you
say will be played back to you, thereby verifying bidirectional voice.

The dialplan looks like this:

[internal]
exten => 611,1,Answer()
exten => 611,2,Echo()

Configuring SIP
The Session Initiation Protocol (SIP), often used in VoIP phones (either hard phones
or soft phones), takes care of the setup and teardown of calls, along with any renego-
tiations during a call. Basically, it helps two endpoints talk to each other (if possible,
directly to each other). SIP does not carry media; rather, it uses the Real-time Trans-
port Protocol (RTP) to transfer the media* directly between phone A and phone B
once the call has been set up.

SIP and RTP
SIP is an application-layer signaling protocol that uses the well-known port 5060 for
communications. SIP can be transported with either the UDP or TCP transport-layer
protocols. Asterisk does not currently have a TCP implementation for transporting
SIP messages, but it is possible that future versions may support it (and patches to
the code base are gladly accepted). SIP is used to “establish, modify, and terminate

* We use the term media to refer to the data transferred between endpoints and used to reconstruct your voice
at the other end. It may also refer to music or prompts from the PBX.

,ch04.20428 Page 67 Wednesday, August 31, 2005 4:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

68 | Chapter 4: Initial Configuration of Asterisk

multimedia sessions such as Internet telephony calls.”* SIP does not transport media
between endpoints.

RTP is used to transmit media (i.e., voice) between endpoints. RTP uses high-num-
bered, unprivileged ports in Asterisk (10,000 through 20,000, by default).

A common topology to illustrate SIP and RTP, commonly referred to as the “SIP
trapezoid,” is shown in Figure 4-2. When Alice wants to call Bob, Alice’s phone con-
tacts her proxy server, and the proxy tries to find Bob (often connecting through his
proxy). Once the phones have started the call, they communicate directly with each
other (if possible), so that the data doesn’t have to tie up the resources of the proxy.

SIP was not the first, and is not the only, VoIP protocol in use today (others include
H.323, MGCP, IAX, and so on), but currently it seems to have the most momentum
with hardware vendors. The advantages of the SIP protocol lie in its wide acceptance
and architectural flexibility (and, we used to say, simplicity!).

SIP Configuration
Here is a basic sip.conf file:

[general]
context=default
srvlookup=yes

[john]
type=friend
secret=welcome
qualify=yes ; Qualify peer is no more than 2000 ms away
nat=no ; This phone is not natted
host=dynamic ; This device registers with us
canreinvite=no ; Asterisk by default tries to redirect
context=internal ; the internal context controls what we can do

* RFC 3261, SIP: Session Initiation Protocol, p. 9, Section 2.

Figure 4-2. The SIP trapezoid

SIP signaling

RTP media

,ch04.20428 Page 68 Wednesday, August 31, 2005 4:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Configuring SIP | 69

The sip.conf file starts with a [general] section, which contains the channel settings
and default options for all users and peers defined within sip.conf. You can override
the default settings on a per-user/peer basis by configuring them within the user/peer
definition.

Domain Name System Service records (DNS SRV records) are a way of setting up a
logical, resolvable address where you can be reached. This allows calls to be for-
warded to different locations without the need to change the logical address. By
using SRV records, you gain many of the advantages of DNS, whereas disabling them
breaks the SIP RFC and removes the ability to place SIP calls based on domain
names. (Note that if multiple records are returned, Asterisk will use only the first.)
DNS SRV record lookups are disabled by default in Asterisk, but it’s highly recom-
mended that you turn them on. To enable them, set srvlookup=yes in the [general]
section of sip.conf.

Each connection is defined as a user, peer, or friend. A user type is used to authenti-
cate incoming calls, a peer type is used for outgoing calls, and a friend type is used
for both. The extension name is defined within square brackets ([]). In this case, we
have defined the extension john as a friend.

A secret is a password used for authentication. Our secret is defined as welcome. We
can monitor the latency between our Asterisk server and the phone with qualify=yes,
thereby determining whether the remote device is reachable. qualify=yes can be used
to monitor any end device, including other Asterisk servers. By default, Asterisk will
consider an extension reachable if the latency is less than 2,000 ms (2 seconds). You
can configure the time Asterisk should use when determining whether or not a peer is
reachable by replacing yes with the number of milliseconds.

If an extension is behind a device performing Network Address Translation (NAT),
such as a router or firewall, configure nat=yes to force Asterisk to ignore the contact
information for the extension and use the address from which the packets are being
received. Setting host=dynamic will require the extension to register so that Asterisk
knows how to reach the phone. To limit an endpoint to a single IP address or fully
qualified domain name (FQDN), replace dynamic with the IP address or domain
name. Note that this limits only where you place calls to, as the user is allowed to
place calls from anywhere (assuming she has authenticated successfully). If you set
host=static, the end device is not required to register.

We’ve also set canreinvite=no. In SIP, invites are used to set up calls and to redirect
media. Any invite issued after the initial invite in the same dialog is referred to as a rein-
vite. For example, suppose two parties are exchanging media traffic. If one client goes
on hold and Asterisk is configured to play Music on Hold (MoH), Asterisk will issue a
reinvite to the secondary client, telling it to redirect its media stream toward the PBX.
Asterisk is then able to stream music or an announcement to the on-hold client.

,ch04.20428 Page 69 Wednesday, August 31, 2005 4:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

70 | Chapter 4: Initial Configuration of Asterisk

The primary client then issues an off-hold command in a reinvite to the PBX, which
in turn issues a reinvite to the secondary party requesting that it redirect its media
stream toward the primary party, thereby ending the on-hold music and reconnect-
ing the clients.

Normally, when two endpoints set up a call they pass their media directly from one
to the other. Asterisk generally breaks this rule by staying within the media path,
allowing it to listen for digits dialed on the phone’s keypad. This is necessary because
if Asterisk cannot determine the call length, inaccurate billing can occur. Configur-
ing canreinvite=no forces Asterisk to stay in the media path, not allowing RTP mes-
sages to be exchanged directly between the endpoints.

Asterisk will not issue a reinvite in any of the following situations:

• If either of the clients is configured with canreinvite=no

• If the clients cannot agree on a common set of codecs and Asterisk needs to per-
form codec conversion

• If either of the clients is configured with nat=yes

• If Asterisk needs to listen to Dual Tone Multi-Frequency (DTMF) tones during
the call (for transfers or any other features)

Lastly, context=internal specifies the location of the instructions used to control
what the phone is allowed to do, and what to do with incoming calls for this exten-
sion. The context name configured in sip.conf matches the name of the context in
extensions.conf, which contains the instructions. More information about contexts
and dialplans will be presented in the following chapter.

If you are configuring a number of clients with similar configurations, you can place
like commands under the [general] heading. Asterisk will use the defaults specified
in the [general] section unless they are explicitly changed within a client’s configura-
tion block.

Client Configuration
While it would be impossible to show all the possible configurations for all the end
devices that can communicate with Asterisk, we feel it beneficial to provide the con-
figuration for at least one free soft phone, which you can use in determining if Aster-
isk is right for your organization. We’ve chosen to use X-ten’s X-Lite client, which
you can download from their web site (http://www.xten.com).

The configuration of the client is generally straightforward. The most important parts
are the username and password for registration, plus the address of the Asterisk server
with which you wish to register. Figure 4-3 shows a sample configuration for the X-Lite
client. Be sure to modify the values of the fields to reflect your configuration.

,ch04.20428 Page 70 Wednesday, August 31, 2005 4:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Configuring SIP | 71

The display name is the string that will be used for Caller ID. The username and
authorization user are used for authentication, along with the password. The
domain/realm should be the IP address or FQDN of your Asterisk server. The SIP
proxy is the same as the one entered for the domain/realm, but with :5060 appended
(this specifies the port number to use for SIP signaling—be sure it matches the port
you have configured in sip.conf).

After entering all this information, verify that Enabled is set to Yes, and then close the
configuration menu. X-Lite will then register to Asterisk. If X-Lite doesn’t appear to
register, simply restart the client. Because X-Lite is minimized to the task tray when
you close the application with the X button, you will need to exit the program by
right-clicking on the icon in the tray and then clicking “Exit” in the pop-up menu
before restarting.

Dialplan Configuration
Many SIP phones, both soft and hard, are multi-line phones. This means they can
accept multiple incoming calls at the same time. Thus, to test your X-Lite soft phone
you can simply call yourself, and the call will loop back from the Asterisk server and

Figure 4-3. X-Lite soft phone configuration screen

,ch04.20428 Page 71 Wednesday, August 31, 2005 4:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

72 | Chapter 4: Initial Configuration of Asterisk

onto line two of the client. To call yourself, dial extension 100. If your preferred cli-
ent doesn’t support multi-line functionality, you can use extension 611 to enter the
Echo() test application.

[internal]
exten => 100,1,Dial(SIP/john)
exten => 611,1,Echo()

Configuring Inbound IAX Connections
The Inter-Asterisk eXchange (IAX) protocol is usually used for server-to-server com-
munication; more hard phones are available that talk SIP. However, there are several
soft phones that support the IAX protocol, and work is progressing on several fronts
for hard phone support in firmware. The primary difference between the IAX and SIP
protocols is the way media (your voice) is passed between endpoints.

With SIP, the RTP (media) traffic is passed using different ports than those used by
the signaling methods. For example, Asterisk receives the signaling of SIP on port
5060 and the RTP (media) traffic on ports 10,000 through 20,000, by default. The
IAX protocol differs in that both the signaling and media traffic are passed via a sin-
gle port: 4569. An advantage to this approach is that the IAX protocol tends to be
better suited to topologies involving NAT.

An IAX user is used to authenticate and handle calls coming into the PBX system.
For calls going out from the PBX, Asterisk uses an IAX peer entry in the iax.conf file
to authenticate with the remote end. (IAX peers will be explored in the section “Con-
figuring Outbound IAX Connections.”)

This section explores the configuration of your system for a Free World Dialup
(FWD) account via IAX. Free World Dialup is a free VoIP service provider that
allows you to connect to any other member of the network, regardless of physical
location, for free. FWD is also connected to over 100 other networks to which you
can connect for free.

Be sure to enable IAX2 support for your FWD account before you get
started by visiting http://www.fwdnet.net/index.php?section_id=112.

This section sets up iax.conf and extensions.conf to allow you to accept calls from
another FWD user. The section on outgoing IAX connections deals with placing calls.

iax.conf Configuration
In iax.conf, sections are defined with a name enclosed in square brackets ([]). Every
iax.conf file needs at least one main section: [general]. Within the [general] section,

,ch04.20428 Page 72 Wednesday, August 31, 2005 4:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Configuring Inbound IAX Connections | 73

you define the settings related to the use of the IAX protocol, such as default codecs
and jitter buffering. You can override the default codecs you specify in the [general]
section by specifying them within the user or peer definitions.

The following [general] section is the default from the iax.conf.sample configura-
tion file (the same file that’s installed when you perform a make samples). For more
information about the options, see Appendix A.

[general]
bandwidth=low
disallow=lpc10
jitterbuffer=no
forcejitterbuffer=no
tos=lowdelay
autokill=yes

register => fwd_number:password@iax2.fwdnet.net

[iaxfwd]
type=user
context=incoming
auth=rsa
inkeys=freeworlddialup

Within the [general] section, you’ll need to add a register statement. The purpose
of the register statement is to tell the FWD IAX server where you are on the Inter-
net (your IP address). When a call is placed to your FWD number, the FWD servers
do a lookup in their database and forward the call to the IP address associated with
the FWD number.

In the [iaxfwd] section, define the user for incoming calls with type=user. Then
define where the incoming call will be handled within the dialplan, with
context=incoming. To specify that the authentication for the incoming call will be
done with an RSA public/private key pair, use auth=rsa. The public key is defined
with inkeys=freeworlddialup. The freeworlddialup public key comes standard with
Asterisk.

Dialplan Configuration
Handling an incoming call in the extensions.conf file is simple. First, create a context
called incoming (the same context name configured for the iaxfwd user in iax.conf).
The context is followed by a Dial() statement that will dial the SIP extension cre-
ated earlier in this chapter. Replace the number 10001 with that of your FWD
account:

[incoming]
exten => 10001,1,Dial(SIP/john)

,ch04.20428 Page 73 Wednesday, August 31, 2005 4:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

74 | Chapter 4: Initial Configuration of Asterisk

Configuring Outbound IAX Connections
While an IAX user receives inbound calls; an IAX peer is used to place outbound
calls. This section will set up iax.conf and extensions.conf so that you can place calls.

iax.conf Configuration
The following entry in iax.conf can be used to place a call on the FWD network:

[iaxfwd]
type=peer
host=iax2.fwdnet.net
username=<fwd-account-number>
secret=<fwd-account-password>
qualify=yes
disallow=all
allow=ulaw
allow=gsm
allow=ilbc
allow=g726

A peer is defined with type=peer. Use host to configure the server through which you
will place calls (iax2.fwdnet.net). Your FWD account number and password will be
used for authentication to the FWD network and are defined respectively with
username and secret.

You can use the qualify=yes statement to occasionally check that the remote server
is responding. The response time (latency) can be viewed from the Asterisk console
with iax2 show peers. By default, a peer is considered unreachable after 2000 ms (2
seconds). You can customize the time period by replacing yes with the number of
milliseconds.

The available codecs and the order of preference can be defined on a per-peer basis.
disallow=all is used to reset any codec settings set previously. You can then allow
the codecs you support and set their preference (from top to bottom), using the syn-
tax allow=codec.

Use the iax2 show registry command from the Asterisk CLI to verify that you’ve
registered successfully.

Dialplan Configuration
Let’s define a section in extensions.conf so that we can place a call to the FWD echo
test application. As in previous configurations, we will create a context, followed by
the instructions to connect to the FWD echo test. Use either your telephone attached
to the FXS port or your SIP phone to place the call by dialing 613.

[internal]
exten => 613,1,Dial(IAX2/iaxfwd/613)

,ch04.20428 Page 74 Wednesday, August 31, 2005 4:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Debugging | 75

Debugging
Several methods of debugging are available in Asterisk. Once you’ve connected to
the console, you can enable different levels of verbosity and debugging output, as
well as protocol packet tracing. We’ll take a look at the various options in this sec-
tion. (The Asterisk console is discussed in more detail in Appendix E.)

Connecting to the Console
To connect to the Asterisk console, you can either start the server in the console
directly (in which case you will not be able to exit out of the console without killing
the Asterisk process), or start Asterisk as a daemon and then connect to a remote
console.

To start the Asterisk process directly in the console, use the console flag:

/usr/sbin/asterisk –c

To connect to a remote Asterisk console, start the daemon first, then connect with
the –r flag:

/usr/sbin/asterisk
/usr/sbin/asterisk –r

If you are having a problem with a specific module not loading, or a module causing
Asterisk to not load, start the Asterisk process with the –c flag to monitor the status
of modules loading. For example, if you attempt to load the OSS channel driver
(which allows the use of the CONSOLE channel), and Asterisk is unable to open /dev/
dsp, you will receive the following error on startup:

WARNING[32174]: chan_oss.c:470 soundcard_init: Unable to open /dev/dsp: No such file
or directory
 == No sound card detected -- console channel will be unavailable
 == Turn off OSS support by adding 'noload=chan_oss.so' in /etc/asterisk/modules.
conf

Enabling Verbosity and Debugging
Asterisk can output debugging information in the form of WARNING, NOTICE, and ERROR
messages. These messages will give you information about your system, such as reg-
istrations, status and progression of calls, and various other useful bits of informa-
tion. Note that WARNING and NOTICE messages are not errors; however, ERROR messages
should be investigated. To enable various levels of verbosity, use set verbose fol-
lowed by a numerical value. Useful values range from 3 to 10. For example, to set the
highest level of verbosity, use:

set verbose 10

,ch04.20428 Page 75 Wednesday, August 31, 2005 4:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

76 | Chapter 4: Initial Configuration of Asterisk

You can also enable core debugging messages with set debug followed by a numeri-
cal value. To enable DEBUG output on the console, you may need to enable it in the
logger.conf file by adding debug to the console => statement, as follows:

console => warning,notice,error,event,debug

Useful values for set debug range from 3 to 10. For example:

set debug 10

Conclusion
If you’ve worked through all of the sections in this chapter, you will have configured
a pair of analog interfaces, a local SIP channel connected to a soft phone, and a con-
nection to Free World Dialup via IAX2. These configurations are quite basic, but
they give us functional channels to work with. We will make use of them in the fol-
lowing chapters, while we learn to build more useful dialplans.

,ch04.20428 Page 76 Wednesday, August 31, 2005 4:55 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

77

Chapter 5 CHAPTER 5

Dialplan Basics

Everything should be made as simple as possible,
but not simpler.

—Albert Einstein (1879–1955)

The dialplan is truly the heart of any Asterisk system, as it defines how Asterisk han-
dles inbound and outbound calls. In a nutshell, it consists of a list of instructions or
steps that Asterisk will follow. Unlike traditional phone systems, Asterisk’s dialplan
is fully customizable. To successfully set up your own Asterisk system, you will need
to understand the dialplan.

If writing a dialplan sounds overwhelming, don’t worry. This chapter explains how
dialplans work in a step-by-step manner and teaches the skills necessary to create
your own. The examples have been designed to build upon one another, so feel free
to go back and re-read a section if something doesn’t quite make sense. Please also
note that this chapter is by no means an exhaustive survey of all the possible things
dialplans can do; our aim is to cover just the fundamentals. We’ll cover more
advanced dialplan topics in later chapters.

Dialplan Syntax
The Asterisk dialplan is specified in the configuration file named extensions.conf.

The extensions.conf file usually resides in the /etc/asterisk/ directory,
but its location may vary depending on how you installed Asterisk.
Other common locations for this file include /usr/local/asterisk/etc/ and
/opt/asterisk/etc/.

The dialplan is made up of four main parts: contexts, extensions, priorities, and
applications. In the next few sections, we’ll cover each of these parts and explain
how they work together to create a dialplan. After explaining the role each of these

,ch05.20886 Page 77 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

78 | Chapter 5: Dialplan Basics

elements plays in the dialplan, we will step you though the process of creating a
basic, functioning dialplan.

Contexts
Dialplans are broken into sections called contexts. Contexts are named groups of
extensions. Simply put, they keep different parts of the dialplan from interacting
with one another. An extension that is defined in one context is completely isolated
from extensions in any another context, unless interaction is specifically allowed.
(We’ll cover how to allow interaction between contexts near the end of the chapter.)

As a simple example, let’s imagine we have two companies sharing an Asterisk
server. If we place each company’s voice menu in its own context, they are effec-
tively separated from each other. This allows us to independently define what hap-
pens when, say, extension 0 is dialed: people pressing 0 at Company A’s voice menu
will get Company A’s receptionist, and callers pressing 0 at Company B’s voice menu
will get Company B’s receptionist. (This example assumes, of course, that we’ve told
Asterisk to transfer the calls to the receptionists when callers press 0.)

Contexts are denoted by placing the name of the context inside square brackets ([]).
The name can be made up of the letters A through Z (upper- and lowercase), the
numbers 0 through 9, and the hyphen and underscore.* For example, a context for
incoming calls looks like this:

[incoming]

All of the instructions placed after a context definition are part of that context, until
the next context is defined. At the beginning of the dialplan, there are two special

Sample Configuration Files
If you installed the sample configuration files when you installed Asterisk, you will most
likely have an existing extensions.conf file. Instead of starting with the sample file, we sug-
gest that you build your extensions.conf file from scratch. This will be very beneficial, as
it will give you a better understanding of dialplan concepts and fundamentals.

That being said, the sample extensions.conf file remains a fantastic resource, full of
examples and ideas that you can use after you’ve learned the basic concepts. We sug-
gest you rename the sample file to something like extensions.conf.sample. That way,
you can refer to it in the future. You can also find the sample configuration files in the
/configs/ directory of the Asterisk source.

* Please note that the space is conspicuously absent from the list of allowed characters. Don’t use spaces in
your context names—you won’t like the result!

,ch05.20886 Page 78 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Dialplan Syntax | 79

contexts named [general] and [globals]. We will discuss the [globals] context later
in this chapter; for now it’s just important to know that these two contexts are spe-
cial.

One of the most important uses of contexts is to enforce security. By using contexts
correctly, you can give certain callers access to features (such as long-distance call-
ing) that aren’t made available to others. If you don’t design your dialplan carefully,
you may inadvertently allow others to fraudulently use your system. Please keep this
in mind as you build your Asterisk system.

The Asterisk source contains a very important file named SECURITY,
which outlines several steps you should take to keep your Asterisk sys-
tem secure. It is vitally important that you read and understand this
file. If you ignore the security precautions outlined there, you may end
up allowing anyone and everyone to make long-distance or toll calls at
your expense!

If you don’t take the security of your Asterisk system seriously, you
may end up paying—literally! Please take the time and effort to secure
your system from toll fraud.

Extensions
Within each context, we define one or more extensions. An extension is an instruc-
tion that Asterisk will follow, triggered by an incoming call or by digits being dialed
on a channel. Extensions specify what happens to calls as they make their way
through the dialplan. Although extensions can be used to specify phone extensions
in the traditional sense (i.e., please call John at extension 153), they can be used for
much more in Asterisk.

The syntax for an extension is the word exten, followed by an arrow formed by the
equals sign and the greater-than sign, like this:

exten =>

This is followed by the name of the extension. When dealing with telephone sys-
tems, we tend to think of extensions as the numbers you would dial to make another
phone ring. In Asterisk, you get a whole lot more—for example, extension names
can be any combination of numbers and letters. Over the course of this chapter and
the next, we’ll use both numeric and alphanumeric extensions.

Assigning names to extensions may seem like a revolutionary concept,
but when you realize that many Voice-over-IP transports support (or
even actively encourage) dialing by name or email address instead of
by number, it makes perfect sense. This is one of the features that
make Asterisk so flexible and powerful.

,ch05.20886 Page 79 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

80 | Chapter 5: Dialplan Basics

A complete extension is composed of three components:

• The name (or number) of the extension

• The priority (each extension can include multiple steps; the step number is
called the “priority”)

• The application (or command) that performs some action on the call

These three components are separated by commas, like this:

exten => name,priority,application()

Here’s a simple example of what a real extension might look like:

exten => 123,1,Answer()

In this example, the extension name is 123, the priority is 1, and the application is
Answer(). Now, let’s move ahead and explain priorities and applications.

Priorities
Each extension can have multiple steps, called priorities. Each priority is numbered
sequentially, starting with 1. (Actually, there is one exception to this rule, as dis-
cussed in the sidebar “Unnumbered Priorities.”) Each priority executes one specific
application. As an example, the following extension would answer the phone (in pri-
ority number 1), and then hang it up (in priority number 2):

exten => 123,1,Answer()
exten => 123,2,Hangup()

You must make sure that your priorities start at 1 and are numbered
consecutively. If you skip a priority, Asterisk will not continue past it.
If you find that Asterisk is not following all the priorities in a given
extension, you may want to make sure you haven’t skipped or mis-
numbered a priority.

Don’t worry if you don’t understand what Answer() and Hangup() are—we’ll cover
them shortly. The key point to remember here is that for a particular extension,
Asterisk follows the priorities in numerical order.

Applications
Applications are the workhorses of the dialplan. Each application performs a spe-
cific action on the current channel, such as playing a sound, accepting touch-tone
input, or hanging up the call. In the previous example, you were introduced to two
simple applications: Answer() and Hangup(). You’ll learn more about how these
work momentarily.

,ch05.20886 Page 80 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

A Simple Dialplan | 81

Some applications, such as Answer() and Hangup(), need no other instructions to do
their jobs. Other applications require additional information. These pieces of infor-
mation, called arguments, can be passed on to the applications to affect how they
perform their actions. To pass arguments to an application, place them between the
parentheses that follow the application name, separated by commas.

Occasionally, you may also see the pipe character (|) being used as a
separator between arguments, instead of a comma. Feel free to use
whichever you prefer. For the examples in this book, however, we’ll be
using the comma to separate arguments to an application.

As we build our first dialplan in the next section, you’ll learn to use applications (and
their associated arguments) to your advantage.

A Simple Dialplan
Now we’re ready to create our first dialplan. We’ll start with a very simple example.
We will design this dialplan so that as a call comes in, Asterisk will answer the call,
play a sound file, and then hang up the call. We’ll use this simple example to point
out the most important dialplan fundamentals.

Unnumbered Priorities
There’s nothing like telling you that priorities have to be numbered sequentially, and
then contradicting ourselves. Oh well, it needs to be done.

Version 1.2 of Asterisk adds a new twist to priority numbering. It introduces the use of
the n priority, which stands for “next.” Each time Asterisk encounters a priority named
n, it takes the number of the previous priority and adds 1. This makes it easier to make
changes to your dialplan, as you don’t have to keep renumbering all your steps. For
example, your dialplan might look something like this:

exten => 123,1,Answer()
exten => 123,n,do something
exten => 123,n,do something else
exten => 123,n,do one last thing
exten => 123,n,Hangup()

Version 1.2 also allows you to assign text labels to priorities. To assign a text label to
a priority, simply add the label inside parentheses after the priority, like this:

exten => 123,n(label),do something

In the next chapter, we’ll cover how to jump between different priorities based on dial-
plan logic.

,ch05.20886 Page 81 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

82 | Chapter 5: Dialplan Basics

For the examples in this chapter to work correctly, we’re assuming that at least one Zap
channel has been created and configured (as described in the previous chapter), and that
all incoming calls are sent to the [incoming] context. If you’re using other types of chan-
nels, you may need to adjust these examples to fit your particular circumstances.

The s Extension
Before we get started with our dialplan, we ought to explain a special extension
called s. When calls enter a context without a specific destination extension (for
example, a ringing FXO line), they are handled automatically by the s extension.
(The s stands for “start,” as most calls start in the s extension.) Since this is exactly
what we need for our dialplan, let’s begin to fill in the pieces. We will be performing
three actions on the call (answer it, play a sound file, and hang it up), so we need to
create an extension called s with three priorities. We’ll place the three priorities
inside [incoming], as all incoming calls should start in this context:

[incoming]
exten => s,1,application()
exten => s,2,application()
exten => s,3,application()

Now all we need to do is fill in the applications, and we’ve created our first dialplan.

The Answer(), Playback(), and Hangup() Applications
If we’re going to answer the call, play a sound file, and then hang up, we’d better
learn how to do just that. The Answer() application is used to answer a channel that
is ringing. This does the initial setup for the channel that receives the incoming call.
(A few applications don’t require that you answer the channel first, but properly
answering the channel before performing any other actions is a very good habit.) As
we mentioned earlier, Answer() takes no arguments.

The Playback() application is used for playing a previously recorded sound file over
a channel. When using the Playback() application, input from the user is simply
ignored.

Asterisk comes with many professionally recorded sound files, which
should be found in the default sounds directory (usually /var/lib/aster-
isk/sounds/). They have been recorded in the GSM format, so they
have a .gsm file extension. We’ll be using these files in many of our
examples. Several of the files in our examples come from the asterisk-
sounds module, so please take the time to install it (see Chapter 3).

To use Playback(), specify a filename (without a file extension) as the argument. For
example, Playback(filename) would play the sound file called filename.gsm,

,ch05.20886 Page 82 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

A Simple Dialplan | 83

assuming it was located in the default sounds directory. Note that you can include
the full path to the file if you want, like this:

Playback(/home/john/sounds/filename)

This example would play filename.gsm from the /home/john/sounds/ directory. You
can also use relative paths from the Asterisk sounds directory:

Playback(custom/filename)

This example would play filename.gsm from the custom/ subdirectory of the default
sounds directory. Note that if the specified directory contains more than one file
with that filename but with different file extensions, Asterisk automatically plays the
best file.*

The Hangup() application does exactly as its name implies: it hangs up the active chan-
nel. The caller will receive an indication that the call has been hung up. You will use this
application at the end of a context when you want to end the current call, to ensure that
callers don’t continue on in the dialplan. This application takes no arguments.

Our First Dialplan
Now that we have created our extension, given it three different priorities, and
learned about the applications we are going to use, let’s put together all the pieces to
create our first dialplan. As is typical in many technology books (especially com-
puter programming books), our first example will be called “Hello World!”

In the first priority of our extension, we’ll answer the call. In the second, we’ll play a
sound file named hello-world.gsm, and in the third we’ll hang up the call. Here’s
what the dialplan looks like:

[incoming]
exten => s,1,Answer()
exten => s,2,Playback(hello-world)
exten => s,3,Hangup()

If you have a channel or two configured, go ahead and try it out! Simply make a new
extensions.conf file with this short dialplan. (If it doesn’t work, check the Asterisk
console for error messages, and make sure your channels are configured to send
inbound calls to the [incoming] context.)

Even though this example is very short and simple, it emphasizes the core concepts
of contexts, extensions, priorities, and applications. Now that we’ve covered these

* Asterisk selects the best file based on translation cost; that is, it selects the file that is the least CPU-intensive
to convert to its native audio format. When you start Asterisk, it calculates the translation costs between the
different audio formats (they often vary from system to system). You can see these translation costs by typing
show translation at the Asterisk command-line interface. We’ll cover more about the different audio formats
(known as codecs) in Chapter 8.

,ch05.20886 Page 83 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

84 | Chapter 5: Dialplan Basics

basic concepts, let’s build upon our example. After all, a phone system that simply
plays a sound file and then hangs up the channel isn’t that useful!

Adding Logic to the Dialplan
The dialplan we just built was static—it always performs the same actions on every
call. Now we’ll start adding some logic to our dialplan so that it will perform differ-
ent actions based on input from the user. We’ll start by introducing a few more
applications.

The Background() and Goto() Applications
One important key to building interactive Asterisk systems is the Background() appli-
cation. Like Playback(), it plays a recorded sound file. Unlike Playback(), however,
when the caller presses a key (or series of keys) on her telephone keypad, it inter-
rupts the playback and goes to the extension that corresponds with the pressed
digit(s). If a caller presses 5, for example, Asterisk will stop playing the sound file and
send control of the call to the first priority of extension 5.

The most common use of the Background() application is to create voice menus
(often called auto-attendants or phone trees). Many companies use voice menus to
direct callers to the proper extensions, thus relieving their receptionists from having
to answer every single call.

Background() has the same syntax as Playback():

exten => 123,1,Background(hello-world)

Another useful application is Goto(). As its name implies, it is used to send the call
to another context, extension, and priority. The Goto() application makes it easy to
programmatically move a call between different parts of the dialplan. The syntax for
the Goto() application calls for us to pass the destination context, extension, and pri-
ority as arguments to the application, like this:

exten => 123,1,Goto(context,extension,priority)

In our next example, we’ll use the Background() and Goto() applications to create a
slightly more complex dialplan, allowing the caller to interact with the system by
pressing digits on the keypad. Let’s begin by using Background() to accept input
from the caller:

[incoming]
exten => s,1,Answer()
exten => s,2,Background(enter-ext-of-person)

In this example, we’ll play the sample sound file named enter-ext-of-person.gsm.
While it’s not the perfect fit for an auto-attendant greeting, it will certainly work for

,ch05.20886 Page 84 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Adding Logic to the Dialplan | 85

this example. Now let’s add two extensions that will be triggered by the caller enter-
ing either 1 or 2 at the prompt:

[incoming]
exten => s,1,Answer()
exten => s,2,Background(enter-ext-of-person)
exten => 1,1,Playback(digits/1)
exten => 2,1,Playback(digits/2)

Before going on, let’s review what we’ve done so far. When users call into our dial-
plan, they will hear a greeting saying, “Please enter the number you wish to call.” If
they press 1, they will hear the number one, and if they press 2, they will hear the
number two. While that’s a good start, let’s embellish it a little. We’ll use the Goto()
application to make the dialplan repeat the greeting after playing back the number:

[incoming]
exten => s,1,Answer()
exten => s,2,Background(enter-ext-of-person)
exten => 1,1,Playback(digits/1)
exten => 1,2,Goto(incoming,s,1)
exten => 2,1,Playback(digits/2)
exten => 2,2,Goto(incoming,s,1)

These two new lines (highlighted in bold) will send the call control back to the s
extension after playing back the selected number.

If you look up the details of the Goto() application, you’ll find that
you can actually pass either one, two, or three arguments to the appli-
cation. If you pass a single argument, it’ll assume it’s the destination
priority in the current extension. If you pass two, it’ll treat them as the
extension and priority to go to in the current context.

In this example, we’ve passed all three arguments for the sake of clar-
ity, but passing just the extension and priority would have had the
same effect.

Handling Invalid Entries and Timeouts
Now that our first voice menu is fairly complete, let’s add some additional special
extensions. First, we need an extension for invalid entries, so that when a caller
presses an invalid entry (e.g., pressing 3 in the above example), the call is sent to the
i extension. Second, we need an extension to handle situations when the caller
doesn’t give input in time (the default timeout is 10 seconds). Calls will be sent to
the t extension if the caller takes too long to press a digit after Background() has fin-
ished playing the sound file. Here is what our dialplan will look like after we’ve
added these two extensions:

[incoming]
exten => s,1,Answer()
exten => s,2,Background(enter-ext-of-person)
exten => 1,1,Playback(digits/1)

,ch05.20886 Page 85 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

86 | Chapter 5: Dialplan Basics

exten => 1,2,Goto(incoming,s,1)
exten => 2,1,Playback(digits/2)
exten => 2,2,Goto(incoming,s,1)
exten => i,1,Playback(pbx-invalid)
exten => i,2,Goto(incoming,s,1)
exten => t,1,Playback(vm-goodbye)
exten => t,2,Hangup()

Using the i and t extensions makes our dialplan a little more robust and user-
friendly. That being said, it is still quite limited, because outside callers have no way
of connecting to a live person. To do that, we’ll need to learn about another applica-
tion, called Dial().

Using the Dial() Application
One of Asterisk’s most valuable features is its ability to connect different callers to
each other. This is especially useful when callers are using different methods of com-
munication. For example, caller A might be communicating over the standard ana-
log telephone network, while user B might be sitting in a café halfway around the
world and speaking on an IP telephone. Luckily, Asterisk takes most of the hard
work out of connecting and translating between disparate networks. All you have to
do is learn how to use the Dial() application.

The syntax of the Dial() application is a little more complex than that of the other
applications we’ve used so far, but don’t let that scare you off. Dial() takes up to four
arguments. The first is the destination you’re attempting to call, which is made up of a
technology (or transport) across which to make the call, a forward slash, and the
remote resource (usually a channel name or number). For example, let’s assume that
we want to call a Zap channel named Zap/1, which is an FXS channel with an analog
phone plugged into it. The technology is “Zap,” and the resource is “1.” Similarly, a
call to a SIP device might have a destination of SIP/1234, and a call to an IAX device
might have a destination of IAX/fred. If we want Asterisk to ring the Zap/1 channel
when extension 123 is reached in the dialplan, we’d add the following extension:

exten => 123,1,Dial(Zap/1)

When this extension is executed, Asterisk will ring the phone connected to channel
Zap/1. If that phone is answered, Asterisk will bridge the inbound call with the Zap/1
channel. We can also dial multiple channels at the same time, by concatenating the
destinations together with an ampersand (&), like this:

exten => 123,1,Dial(Zap/1&Zap/2&Zap/3)

The Dial() application will bridge the inbound call with whichever destination
channel is answered first.

The second argument to the Dial() application is a timeout, specified in seconds. If
a timeout is given, Dial() will attempt to call the destination(s) for that number of

,ch05.20886 Page 86 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Adding Logic to the Dialplan | 87

seconds before giving up and moving on to the next priority in the extension. If no
timeout is specified, Dial() will continue to dial the called channel(s) until someone
answers or the caller hangs up. Let’s add a timeout of 10 seconds to our extension:

exten => 123,1,Dial(Zap/1,10)

If the call is answered before the timeout, the channels are bridged and the dialplan
is done. If the destination simply does not answer, Dial() goes on to the next prior-
ity in the extension. If, however, the destination channel is busy, Dial() will go to
priority n+101, if it exists (where n is the priority where the Dial() application was
called). This allows us to handle unanswered calls differently from calls whose desti-
nations were busy.

Let’s put what we’ve learned so far into another example:

exten => 123,1,Dial(Zap/1,10)
exten => 123,2,Playback(vm-nobodyavail)
exten => 123,3,Hangup()
exten => 123,102,Playback(tt-allbusy)
exten => 123,103,Hangup()

As you can see, this example will play the vm-nobodyavail.gsm sound file if the call
goes unanswered, or the tt-allbusy.gsm sound file if the Zap/1 channel is currently
busy.

The third argument to Dial() is an option string. It may contain one or more charac-
ters that modify the behavior of the Dial() application. While the list of possible
options is too long to cover here, the most popular option is the letter r. If you place
the letter r as the third argument, the calling party will hear a ringing tone while the
destination channel is being notified of an incoming call.

It should be noted that the r option isn’t always required to indicate ringing, as
Asterisk will automatically generate a ringing tone when it is attempting to establish
a channel. However, you can use the r option to force Asterisk to indicate ringing
even when no connection is being attempted. To add the r option to our last exam-
ple, we simply change the first line:

exten => 123,1,Dial(Zap/1,10,r)
exten => 123,2,Playback(vm-nobodyavail)
exten => 123,3,Hangup()
exten => 123,102,Playback(tt-allbusy)
exten => 123,103,Hangup()

Since the extensions numbered 1 and 2 in our dialplan are somewhat useless now
that we know how to use the Dial() application, let’s replace them with extensions
101 and 102, which will allow outside callers to reach John and Jane:

[incoming]
exten => s,1,Answer()
exten => s,2,Background(enter-ext-of-person)
exten => 101,1,Dial(Zap/1,10)
exten => 101,2,Playback(vm-nobodyavail)

,ch05.20886 Page 87 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

88 | Chapter 5: Dialplan Basics

exten => 101,3,Hangup()
exten => 101,102,Playback(tt-allbusy)
exten => 101,103,Hangup()
exten => 102,1,Dial(SIP/Jane,10)
exten => 102,2,Playback(vm-nobodyavail)
exten => 102,3,Hangup()
exten => 102,102,Playback(tt-allbusy)
exten => 102,103,Hangup()
exten => i,1,Playback(pbx-invalid)
exten => i,2,Goto(incoming,s,1)
exten => t,1,Playback(vm-goodbye)
exten => t,2,Hangup()

The fourth and final argument to the Dial() application is a URL. If the destination
channel supports receiving a URL at the time of the call, the specified URL will be
sent (for example, if you have an IP telephone that supports receiving a URL, it will
appear on the phone’s display; likewise, if you’re using a soft phone, the URL might
pop up on your computer screen). This argument is very rarely used.

If you are making outbound calls on an FXO Zap channel, you can use the following
syntax to dial a number on that channel:

exten => 123,1,Dial(Zap/4/5551212)

This example would dial the number 555-1212 on the Zap/4 channel. For other chan-
nel types, such as SIP and IAX, simply put the destination as the resource, as shown
in these two lines:

exten => 123,1,Dial(SIP/1234)
exten => 124,1,Dial(IAX2/john@asteriskdocs.org)

Note that any of these arguments may be left blank. For example, if you want to spec-
ify an option but not a timeout, simply leave the timeout argument blank, like this:

exten => 123,1,Dial(Zap/1,,r)

Adding a Context for Internal Calls
In our examples thus far we have limited ourselves to a single context, but it is prob-
ably fair to assume that almost all Asterisk installations will have more than one con-
text in their dialplans. As we mentioned at the beginning of this chapter, one
important function of contexts is to separate privileges (such as making long-dis-
tance calls or calling certain extensions) for different classes of callers. In our next
example, we’ll add to our dialplan by creating two internal phone extensions, and
we’ll set up the ability for these two extensions to call each other. To accomplish
this, we’ll create a new context called [internal].

,ch05.20886 Page 88 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Adding Logic to the Dialplan | 89

As in previous examples, we’ve assumed that an FXS Zap channel
(Zap/1, in this case) has already been configured, and that your zapata.
conf file is configured so that any calls originated by Zap/1 begin in the
[internal] context. For a few examples at the end of the chapter, we’ll
also assume that an FXO Zap channel has been configured as Zap/4,
with calls coming in on this channel being sent to the [incoming] con-
text. This channel will be used for outbound calling.

We’ve also assumed you have at least one SIP channel (named SIP/
jane) that is configured to originate in the [internal] context. We’ve
done this to introduce you to using other types of channels.

If you don’t have hardware for the channels listed above (such as Zap/
4), or if you’re using hardware with different channel names (e.g., not
SIP/jane), don’t worry—you can change the examples to match your
particular system configuration.

Our dialplan now looks like this:

[incoming]
exten => s,1,Answer()
exten => s,2,Background(enter-ext-of-person)
exten => 101,1,Dial(Zap/1,10)
exten => 101,2,Playback(vm-nobodyavail)
exten => 101,3,Hangup()
exten => 101,102,Playback(tt-allbusy)
exten => 101,103,Hangup()
exten => 102,1,Dial(SIP/Jane,10)
exten => 102,2,Playback(vm-nobodyavail)
exten => 102,3,Hangup()
exten => 102,102,Playback(tt-allbusy)
exten => 102,103,Hangup()
exten => i,1,Playback(pbx-invalid)
exten => i,2,Goto(incoming,s,1)
exten => t,1,Playback(vm-goodbye)
exten => t,2,Hangup()

[internal]
exten => 101,1,Dial(Zap/1,,r)
exten => 102,1,Dial(SIP/jane,,r)

In this example, we have added two new extensions to the [internal] context. This
way, the person using channel Zap/1 can pick up the phone and dial the person at
channel SIP/jane by dialing 102. By that same token, the phone registered as SIP/
jane can dial Zap/1 by dialing 101.

We’ve arbitrarily decided to use extensions 101 and 102 for our examples, but feel
free to use whatever numbering convention you wish for your extensions. You
should also be aware that you’re not limited to three-digit extensions—you can use
as few or as many digits as you like. (Well, almost. Extensions must be shorter than

,ch05.20886 Page 89 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

90 | Chapter 5: Dialplan Basics

80 characters long, and you shouldn’t use single-character extensions for your own
use, as they’re reserved.) Don’t forget that you can use names as well, like so:

[incoming]
exten => s,1,Answer()
exten => s,2,Background(enter-ext-of-person)
exten => 101,1,Dial(Zap/1,10)
exten => 101,2,Playback(vm-nobodyavail)
exten => 101,3,Hangup()
exten => 101,102,Playback(tt-allbusy)
exten => 101,103,Hangup()
exten => 102,1,Dial(SIP/Jane,10)
exten => 102,2,Playback(vm-nobodyavail)
exten => 102,3,Hangup()
exten => 102,102,Playback(tt-allbusy)
exten => 102,103,Hangup()
exten => t,1,Playback(vm-goodbye)
exten => t,2,Hangup()

[internal]
exten => 101,1,Dial(Zap/1,,r)
exten => john,1,Dial(Zap/1,,r)
exten => 102,1,Dial(SIP/jane,,r)
exten => jane,1,Dial(SIP/jane,,r)

It certainly wouldn’t hurt to add named extensions if you think your users might be
dialed via a VoIP transport that supports names.

Now that our internal callers can call each other, we’re well on our way toward hav-
ing a complete dialplan. Next, we’ll see how we can make our dialplan more scal-
able and easier to modify in the future.

Using Variables
Variables can be used in an Asterisk dialplan to help reduce typing, add clarity, or
add additional logic to a dialplan. If you have some computer programming experi-
ence, you probably already understand what a variable is. If not, don’t worry; we’ll
explain what variables are and how they are used.

You can think of a variable as a container that can hold one value at a time. So, for
example, we might create a variable called JOHN and assign it the value of Zap/1. This
way, when we’re writing our dialplan, we can refer to John’s channel by name,
instead of remembering that John is using Zap/1. To assign a value to a variable, sim-
ply type the name of the variable, an equals sign, and the value, like this:

JOHN=Zap/1

There are two ways to reference a variable. To reference the variable’s name, simply
type the name of the variable, such as JOHN. If, on the other hand, you want to refer-
ence its value, you must type a dollar sign, an opening curly brace, the name of the

,ch05.20886 Page 90 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Adding Logic to the Dialplan | 91

variable, and a closing curly brace. Here’s how we’d reference the variable inside the
Dial() application:

exten => 555,1,Dial(${JOHN},,r)

In our dialplan, whenever we write ${JOHN}, Asterisk will automatically replace it
with whatever value has been assigned to the variable named JOHN.

Note that variable names don’t have to be capitalized, but we’re doing
so in this book for readability’s sake.

There are three types of variables we can use in our dialplan: global variables, chan-
nel variables, and environment variables. Let’s take a moment to look at each type.

Global variables

As their name implies, global variables apply to all extensions in all contexts. Global
variables are useful in that they can be used anywhere within a dialplan to increase
readability and manageability. Suppose for a moment that you had a large dialplan
and several hundred references to the Zap/1 channel. Now imagine you had to go
through your dialplan and change all those references to Zap/2. It would be a long
and error-prone process, to say the least.

On the other hand, if you had defined a global variable with the value Zap/1 at the
beginning of your dialplan and then referenced that instead, you would only have to
change one line.

Global variables should be declared in the [globals] context at the beginning of the
extensions.conf file. They can also be defined programmatically, using the
SetGlobalVar() application. Here is how both methods look inside of a dialplan:

[globals]
JOHN=Zap/1

[internal]
exten => 123,1,SetGlobalVar(JOHN=Zap/1)

Channel variables

A channel variable is a variable (such as the Caller*ID number) that is associated only
with a particular call. Unlike global variables, channel variables are defined only for
the duration of the current call and are available only to the channel participating in
that call.

There are many predefined channel variables available for use within the dialplan,
which are explained in the README.variables file in the doc subdirectory of the
Asterisk source. Channel variables are set via the Set() application:

exten => 123,1,Set(MAGICNUMBER=42)

,ch05.20886 Page 91 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

92 | Chapter 5: Dialplan Basics

We’ll use several of these channel variables in the next chapter.

Environment variables

Environment variables are a way of accessing Unix environment variables from
within Asterisk. These are referenced in the form of ${ENV(var)}, where var is the
Unix environment variable you wish to reference.

Adding variables to our dialplan

Now that we’ve learned about variables, let’s put them to work in our dialplan. We’ll
add variables for two people, John and Jane:

[globals]
JOHN=Zap/1
JANE=SIP/jane

[incoming]
exten => s,1,Answer()
exten => s,2,Background(enter-ext-of-person)
exten => 101,1,Dial(${JOHN},10)
exten => 101,2,Playback(vm-nobodyavail)
exten => 101,3,Hangup()
exten => 101,102,Playback(tt-allbusy)
exten => 101,103,Hangup()
exten => 102,1,Dial(${JANE},10)
exten => 102,2,Playback(vm-nobodyavail)
exten => 102,3,Hangup()
exten => 102,102,Playback(tt-allbusy)
exten => 102,103,Hangup()
exten => i,1,Playback(pbx-invalid)
exten => i,2,Goto(incoming,s,1)
exten => t,1,Playback(vm-goodbye)
exten => t,2,Hangup()

[internal]
exten => 101,1,Dial(${JOHN},,r)
exten => 102,1,Dial(${JANE},,r)

Pattern Matching
Often, it would be tedious to add every possible extension to a dialplan. This is espe-
cially the case for outbound calls. Can you imagine a dialplan with an extension for
every possible number you could dial? Luckily, Asterisk has just the thing for situa-
tions like this: pattern matching to allow you to use one section of code for many dif-
ferent extensions.

,ch05.20886 Page 92 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Adding Logic to the Dialplan | 93

Pattern-matching syntax

When using pattern matching, we use different letters and symbols to represent the pos-
sible digits we want to match. Patterns always start with an underscore (_). This tells
Asterisk that we’re matching on a pattern, and not on an extension name. (This means,
of course, that you should never start your extension names with an underscore.)

If you forget the underscore on the front of your pattern, Asterisk will
think it’s just a named extension and won’t do any pattern matching.

After the underscore, you can use one or more of the following characters:

X
Matches any digit from 0 to 9.

Z
Matches any digit from 1 to 9.

N
Matches any digit from 2 to 9.

[15-7]
Matches any digit or range of digits specified. In this case, matches a 1, 5, 6, or
7.

. (period)
Wildcard match; matches one or more characters.

If you’re not careful, wildcard matches can make your dialplans do
things you’re not expecting. You should only use the wildcard match
in a pattern after you’ve matched as many other digits as possible. For
example, the following pattern match should probably never be used:

_.

In fact, Asterisk will warn you if you try to use it. Instead, use this one,
if possible:

_X.

To use pattern matching in your dialplan, simply put the pattern in the place of the
extension name (or number):

exten => _NXX,1,Playback(auth-thankyou)

In this example, the pattern would match any 3-digit extension from 200 through
999 (the N matches any digit between 2 and 9, and each X matches a digit between 0
and 9). That is to say, if a caller dialed any 3-digit extension between 200 and 999 in
this context, he would hear the sound file auth-thankyou.gsm.

,ch05.20886 Page 93 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

94 | Chapter 5: Dialplan Basics

One other important thing to know about pattern matching is that if Asterisk finds
more than one pattern that matches the dialed extension, it will use the most specific
one. Say you had defined the following two patterns, and a caller dialed 888-555-1212:

exten => _555XXXX,1,Playback(digits/1)
exten => _55512XX,1,Playback(digits/2)

In this case the second extension would be selected, because it is more specific.

Pattern-matching examples

Before we go on, let’s look at a few more pattern-matching examples. In each one,
see if you can tell what the pattern would match before reading the explanation.
We’ll start with an easy one:

_NXXXXXX

Got it? This pattern would match any seven-digit number, as long as the first digit
was two or higher. According to the North American Numbering Plan, this pattern
would match any local number.

Let’s try another:

_1NXXNXXXXXX

The NANP and Toll Fraud
The North American Number Plan (NANP) is a shared telephone numbering scheme
used by 19 countries in North America and the Caribbean.

In the United States and Canada, telecom regulations are similar (and sensible) enough
that you can place a long-distance call to most numbers in country code 1 and expect
to pay a reasonable toll. What many people don’t realize, however, is that 19 countries,
many of which have very different telecom regulations, share the NANP. (More infor-
mation can be found at http://www.nanpa.com.)

Many toll-fraud schemes trick naive North Americans into calling shockingly expen-
sive per-minute toll numbers in a Caribbean country—the callers believe that since
they dialed 1-NPA-NXX-XXXX to reach the number, they’ll be paying their standard
national long-distance rate for the call. Since the country in question may have regula-
tions that allow for this form of extortion, the caller is ultimately held responsible for
the call charges.

The only way to prevent this sort of activity is to block calls to certain area codes (809,
for example) and remove the restrictions only on an as-needed basis. Please take extra
caution to make sure users can’t abuse your phone system!

,ch05.20886 Page 94 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Adding Logic to the Dialplan | 95

This one is slightly more difficult. This would match the number 1, followed by an
area code between 200 and 999, then any 7-digit number. In the NANP, you would
use this pattern to match any long-distance number.

Now for an even trickier example:
_011.

If that one left you scratching your head, look at it again. Did you notice the period
on the end? This pattern matches any number that starts with 011 and has at least
one more digit. In the NANP, this indicates an international phone number.*

Using the ${EXTEN} channel variable
We know what you’re thinking… You’re sitting there asking yourself, “So what hap-
pens if I want to use pattern matching, but I need to know which digits were actu-
ally dialed?” Luckily, Asterisk has just the answer. Whenever you dial an extension,
Asterisk sets the ${EXTEN} channel variable to the digits that were dialed. We can use
an application called SayDigits() to test it out:

exten => _XXX,1,SayDigits(${EXTEN})

In this example, the SayDigits() application will read back to you the three-digit
extension you dialed.

Often, it’s useful to manipulate the ${EXTEN} by stripping a certain number of digits
off the front of the extension. This is accomplished by using the syntax ${EXTEN:x},
where x is the number of digits you’d like to remove. For example, if the value of
EXTEN is 95551212, ${EXTEN:1} equals 5551212. Let’s take a look at another example:

exten => _XXX,1,SayDigits(${EXTEN:1})

In this example, the SayDigits() application would read back only the last two dig-
its of the dialed extension.

If x is negative, SayDigits() gives you the last x digits of the dialed extension. In this
next example, SayDigits() will read back only the last digit of the dialed extension:

exten => _XXX,1,SayDigits(${EXTEN:-1))

Enabling Outbound Dialing
Now that we’ve introduced pattern matching, we can go about the process of allow-
ing users to make outbound calls. The first thing we’ll do is add a variable to the
[globals] context to define which channel will be used for outbound calls:

[globals]
JOHN=Zap/1
JANE=SIP/jane
OUTBOUNDTRUNK=Zap/4

* If you find it peculiar that we’ve chosen patterns that are used to dial outbound numbers in the NANP,
you’re on to something! We’ll be using these patterns in the next section to add outbound dialing capabilities
to our dialplan.

,ch05.20886 Page 95 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

96 | Chapter 5: Dialplan Basics

Next, we will add contexts to our dialplan for outbound dialing.

You may be asking yourself at this point, “Why do we need separate contexts for
outbound calls?” This is so that we can regulate and control who has permission to
make outbound calls, and which types of outbound calls they are allowed to make.

First, let’s make a context for local calls. To be consistent with most traditional
phone switches, we’ll put a 9 on the front of our patterns, so that users have to dial 9
before calling an outside number:

[outbound-local]
exten => _9NXXXXXX,1,Dial(${OUTBOUNDTRUNK}/${EXTEN:1})
exten => _9NXXXXXX,2,Congestion()
exten => _9NXXXXXX,102,Congestion()

Note that dialing 9 doesn’t actually give you an outside line, unlike
with many traditional PBX systems. Once you dial 9 on an FXS line,
the dial tone will stop. If you’d like the dial tone to continue even after
dialing 9, add the following line (right after your context definition):

ignorepat => 9

This directive tells Asterisk to continue to provide a dial tone, even
after the caller has dialed the indicated pattern.

Let’s review what we’ve just done. We’ve added a global variable called
OUTBOUNDTRUNK, which will control which channel to use for outbound calls. We’ve
also added a context for local outbound calls. In priority 1, we take the dialed exten-
sion, strip off the 9 with the ${EXTEN:1} syntax, and then attempt to dial that num-
ber on the channel signified by the variable OUTBOUNDTRUNK. If the call is successful,
the caller is bridged with the outbound channel. If the call is unsuccessful (because
either the channel is busy or the number can’t be dialed for some reason), the
Congestion() application is called, which plays a “fast busy signal” (congestion tone)
to let the caller know that the call was unsuccessful.

Before we go any farther, let’s make sure our dialplan allows outbound emergency
numbers:

[outbound-local]
exten => _9NXXXXXX,1,Dial(${OUTBOUNDTRUNK}/${EXTEN:1})
exten => _9NXXXXXX,2,Congestion()
exten => _9NXXXXXX,102,Congestion()

exten => 911,1,Dial(${OUTBOUNDTRUNK}/911)
exten => 9911,1,Dial(${OUTBOUNDTRUNK}/911)

Again, we’re assuming for the sake of these examples that we’re inside the United
States or Canada. If you’re outside of this area, please replace 911 with the emer-
gency services number in your particular location. This is something you never want
to forget to put in your dialplan!

,ch05.20886 Page 96 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Adding Logic to the Dialplan | 97

Next, let’s add a context for long-distance calls:

[outbound-long-distance]
exten => _91NXXNXXXXXX,1,Dial(${OUTBOUNDTRUNK}/${EXTEN:1})
exten => _91NXXNXXXXXX,2,Congestion()
exten => _91NXXNXXXXXX,102,Congestion()

Now that we have these two new contexts, how do we allow internal users to take
advantage of them? We need a way for contexts to be able to use other contexts.

Includes
Asterisk enables us to use a context within another context via the include directive.
This is used to grant access to different sections of the dialplan. We’ll use the include
functionality to allow users in our [internal] context the ability to make outbound
phone calls. But first, let’s cover the syntax.

The include statement takes the following form, where context is the name of the
remote context we want to include in the current context:

include => context

When we include other contexts within our current context, we have to be mindful
of the order in which we including them. Asterisk will first try to match the exten-
sion in the current context. If unsuccessful, it will then try the first included context,
and then continue to the other included contexts in the order in which they were
included.

As it sits, our current dialplan has two contexts for outbound calls, but there’s no
way for people in the [internal] context to use them. Let’s remedy that by includ-
ing the two outbound contexts in the [internal] context, like this:

[globals]
JOHN=Zap/1
JANE=SIP/jane
OUTBOUNDTRUNK=Zap/4

[incoming]
exten => s,1,Answer()
exten => s,2,Background(enter-ext-of-person)
exten => 101,1,Dial(${JOHN},10)
exten => 101,2,Playback(vm-nobodyavail)
exten => 101,3,Hangup()
exten => 101,102,Playback(tt-allbusy)
exten => 101,103,Hangup()
exten => 102,1,Dial(${JANE},10)
exten => 102,2,Playback(vm-nobodyavail)
exten => 102,3,Hangup()
exten => 102,102,Playback(tt-allbusy)
exten => 102,103,Hangup()
exten => i,1,Playback(pbx-invalid)
exten => i,2,Goto(incoming,s,1)

,ch05.20886 Page 97 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

98 | Chapter 5: Dialplan Basics

exten => t,1,Playback(vm-goodbye)
exten => t,2,Hangup()

[internal]
include => outbound-local
include => outbound-long-distance

exten => 101,1,Dial(${JOHN},,r)
exten => 102,1,Dial(${JANE},,r)

[outbound-local]
exten => _9NXXXXXX,1,Dial(${OUTBOUNDTRUNK}/${EXTEN:1})
exten => _9NXXXXXX,2,Congestion()
exten => _9NXXXXXX,102,Congestion()

exten => 911,1,Dial(${OUTBOUNDTRUNK}/911)
exten => 9911,1,Dial(${OUTBOUNDTRUNK}/911)

[outbound-long-distance]
exten => _91NXXNXXXXXX,1,Dial(${OUTBOUNDTRUNK}/${EXTEN:1})
exten => _91NXXNXXXXXX,2,Congestion()
exten => _91NXXNXXXXXX,102,Congestion()

These two include statements make it possible for callers in the [internal] context
to make outbound calls. We should also note that for security’s sake you should
always make sure that your [inbound] context never allows outbound dialing. (If by
chance it did, people could dial into your system, and then make outbound toll calls
that would be charged to you!)

Conclusion
And there we have it—a basic but functional dialplan. It’s not exactly fully featured,
but we’ve covered all of the fundamentals. In the following chapters, we’ll continue
to add features to this foundation.

If parts of this dialplan don’t make sense, you may want to go back and re-read a sec-
tion or two before continuing on to the next chapter. It’s imperative that you under-
stand these principles and how to apply them, or the following chapters will only
confuse you more. And we don’t want you to be confused!

,ch05.20886 Page 98 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

99

Chapter 6 CHAPTER 6

More Dialplan Concepts

For a list of all the ways technology has failed to
improve the quality of life, please press three.

—Alice Kahn

Alrighty. You’ve got the basics of dialplans down, and you’re hoping there’s more to
come. Fear not; there is more—much more. If you don’t have the last chapter sorted
out yet, please go back and give it another read. We’re building on what we’ve cov-
ered so far, and we need you to be comfortable with the material, as we’re about to
get into more advanced topics.

Expressions and Variable Manipulation
Before we dive further into dialplans, we need to introduce you to a few tricks that
will greatly add to the power you can exercise with your dialplan. These constructs
add incredible intelligence to your dialplan, by enabling it to make decisions based
on all sorts of different criteria. Put on your thinking cap, and let’s get started.

Basic Expressions
Expressions are combinations of variables, operators, and values that you put
together to get a result. An expression can test values, alter strings, or perform math-
ematical calculations. Let’s say we have a variable called COUNT. In plain English, two
expressions using that variable might be “COUNT plus 1” and “COUNT divided by 2.”
Each of these expressions has a particular result or value, depending on the value of
the given variable.

In Asterisk, expressions always begin with a dollar sign and an opening square
bracket and end with a closing square bracket, as shown below:

$[expression]

,ch06.21282 Page 99 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

100 | Chapter 6: More Dialplan Concepts

Thus, we would write the above two examples like this:

$[${COUNT} + 1]
$[${COUNT} / 2]

When Asterisk encounters an expression in a dialplan, it replaces the entire expres-
sion with the resulting value. It is important to note that this takes place after vari-
able substitution. To demonstrate, let’s look at the following code:*

exten => 321,1,Set(COUNT=3)
exten => 321,2,Set(NEWCOUNT=$[${COUNT} + 1])
exten => 321,3,SayNumber(${NEWCOUNT})

In the first priority, we assign the value of 3 to the variable named COUNT.

In the second priority, only one application—Set()—is involved, but three things
actually happen:

1. Asterisk substitutes ${COUNT} with the number 3 in the expression. The expres-
sion effectively becomes this:

exten => 321,2,Set(NEWCOUNT=$[3 + 1])

2. Next, Asterisk evaluates the expression, adding 1 to 3, and replaces it with its
computed value of 4:

exten => 321,2,Set(NEWCOUNT=4)

3. Finally, the value 4 is assigned to the NEWCOUNT variable by the Set() application.

The third priority simply invokes the SayNumber() application, which speaks the cur-
rent value of the variable ${NEWCOUNT} (set to the value 4 in priority two).

Try it out in your own dialplan.

Operators
When you create an Asterisk dialplan, you’re really writing code in a specialized
scripting language. This means that the Asterisk dialplan—like any programming
language—recognizes symbols called operators that allow you to manipulate vari-
ables. Let’s look at the types of operators that are available in Asterisk:

Boolean operators
These operators evaluate the “truth” of a statement. In computing terms, that
essentially refers to whether the statement is something or nothing (non-zero or
zero, true or false, on or off, and so on). The Boolean operators are:

* Remember that when you reference a variable, you can call it by its name, but when you refer to a variable’s
value, you have to use the dollar sign and brackets around the variable name.

,ch06.21282 Page 100 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Expressions and Variable Manipulation | 101

expr1 | expr2
This operator (called the “or” operator, or “pipe”) returns the evaluation of
expr1 if it is true (neither an empty string nor zero). Otherwise, it returns the
evaluation of expr2.

expr1 & expr2
This operator (called “and”) returns the evaluation of expr1 if both expres-
sions are true (i.e., neither expression evaluates to an empty string or zero).
Otherwise, it returns zero.

expr1 {=, >, >=, <, <=, !=} expr2
These operators return the results of an integer comparison if both argu-
ments are integers; otherwise, they return the results of a string comparison.
The result of each comparison is 1 if the specified relation is true, or 0 if the
relation is false. (If you are doing string comparisons, they will be done in a
manner that’s consistent with the current locale settings of your operating
system.)

Mathematical operators
Want to perform a calculation? You’ll want one of these:

expr1 {+, -} expr2
These operators return the results of the addition or subtraction of integer-
valued arguments.

expr1 {*, /, %} expr2
These return, respectively, the results of the multiplication, integer division,
or remainder of integer-valued arguments.

Regular expression operator
You can also use the regular expression operator in Asterisk:

expr1 : expr2
This operator matches expr1 against expr2, where expr2 must be a regular
expression.* The regular expression is anchored to the beginning of the
string with an implicit ^.†

If the match succeeds and the pattern contains at least one regular expres-
sion subexpression—\(...\)—the string corresponding to \1 is returned;
otherwise, the matching operator returns the number of characters matched.
If the match fails and the pattern contains a regular expression subexpres-
sion, the null string is returned; otherwise, 0 is returned.

* For more on regular expressions, grab a copy of the ultimate reference, Jeffrey Friedl’s Mastering Regular
Expressions (O’Reilly; http://www.oreilly.com/catalog/regex2/) or visit http://www.regular-expressions.info.

† If you don’t know what a ^ has to do with regular expressions, you simply must obtain a copy of Mastering
Regular Expressions. It will change your life!

,ch06.21282 Page 101 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

102 | Chapter 6: More Dialplan Concepts

The Asterisk parser is quite simple, so it requires that you put at least one space
between the operator and any other values. Consequently, the following may not
work as expected:

exten => 123,1,Set(TEST=$[2+1])

This would assign the variable TEST the string “2+1”, instead of the value 3. Instead,
put spaces around the operator, like this:

exten => 234,1,Set(TEST=$[2 + 1])

To concatenate text onto the beginning or end of a variable, simply place them
together in an expression, like this:

exten => 234,1,Set(NEWTEST=$[blah${TEST}])

Dialplan Functions
Dialplan functions are not a new concept. In Asterisk 1.2, they should be used where
possible. Many applications that perform the same operation as a corresponding
function will eventually be removed in favor of the function. Functions allow you to
add more power to your expressions—you can think of them as being similar to
operators, but more advanced. For example, dialplan functions allow you to calcu-
late string lengths, dates and times, MD5 checksums, and so on, all from within a
dialplan expression.

Syntax
Dialplan functions have the following basic syntax:

FUNCTION_NAME(argument)

Much like with variables, you reference a function’s name as above, but you refer-
ence a function’s value with the addition of a dollar sign, an opening curly brace, and
a closing curly brace:

${FUNCTION_NAME(argument)}

Functions can also encapsulate other functions, like so:

${FUNCTION_NAME(${FUNCTION_NAME(argument)})}
 ^ ^ ^ ^ ^^^^
 1 2 3 4 4321

As you’ve probably already figured out, you must be very careful about making sure
you have matching parentheses and braces. In the above example, we have labeled
the opening parentheses and curly braces with numbers and their corresponding
closing counterparts with the same numbers.

,ch06.21282 Page 102 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Conditional Branching | 103

Examples of Dialplan Functions
Functions are often used in conjunction with the Set() application to either get or
set the value of a variable. As a simple example, let’s look at the LEN() function. This
function calculates the string length of its argument. Let’s calculate the string length
of a variable and read back the length to the caller:

exten => 123,1,Set(TEST=example)
exten => 123,2,SayNumber(${LEN(${TEST})})

The above example would evaluate the string example as having seven characters,
assign the number of characters to the variable length, and then speak the number to
the user with the SayNumber() application.

Let’s look at another simple example. If we wanted to set one of the various channel
timeouts, we could use the TIMEOUT() function. The TIMEOUT() function accepts one
of three arguments: absolute, digit, and response. Their corresponding applications
are AbsoluteTimeout(), DigitTimeout(), and ResponseTimeout(). To set the digit tim-
eout with the TIMEOUT() function, we could use the Set() application, like so:

exten => s,1,Set(TIMEOUT(digit)=30)

Notice the lack of ${ } surrounding the function. Just as if we were assigning a value to
a variable, we assign a value to a function without the use of the ${ } encapsulation.

A complete list of available functions can be found by typing show functions at the
Asterisk command-line interface.

Conditional Branching
Now that you’ve learned a bit about expressions and functions, it’s time to put them
to use. By using expressions and functions, you can add even more advanced logic to
your dialplan. To allow your dialplan to make decisions, you’ll use conditional
branching. Let’s take a closer look.

The GotoIf() Application
The key to conditional branching is the GotoIf() application. GotoIf() evaluates an
expression and sends the caller to a specific destination based on whether the expres-
sion evaluates to true or false.

GotoIf() uses a special syntax, often called the conditional syntax:

GotoIf(expression?destination1:destination2)

If the expression evaluates to true, the caller is sent to the first destination. If the
expression evaluates to false, the caller is sent to the second destination. So, what is
true and what is false? An empty string and the number 0 evaluate as false. Anything
else evaluates as true.

,ch06.21282 Page 103 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

104 | Chapter 6: More Dialplan Concepts

The destinations can each be one of the following:

• A priority within the same extension, such as 10

• An extension and a priority within the same context, such as 123,10

• A context, extension, and priority, such as incoming,123,10

• A named priority within the same extension, such as passed

Either of the destinations may be omitted, but not both. If the omitted destination is
to be followed, Asterisk simply goes on to the next priority in the current extension.

Let’s use GotoIf() in an example:

exten => 345,1,Set(TEST=1)
exten => 345,2,GotoIf($[{$TEST} = 1]?10:20)
exten => 345,10,Playback(weasels-eaten-phonesys)
exten => 345,20,Playback(office-iguanas)

By changing the value assigned to TEST in the first line, you should be able to have
your Asterisk server play a different greeting.

Let’s look at another example of conditional branching. This time, we’ll use both
Goto() and GotoIf() to count down from 10 and then hang up:

exten => 123,1,Set(COUNT=10)
exten => 123,2,GotoIf($[${COUNT} > 0]?:10)
exten => 123,3,SayNumber(${COUNT})
exten => 123,4,Set(COUNT=$[${COUNT} - 1])
exten => 123,5,Goto(2)
exten => 123,10,Hangup()

Let’s analyze this example. In the first priority, we set the variable COUNT to 10. Next,
we check to see if COUNT is greater than 0. If it is, we move on to the next priority.
(Don’t forget that if we omit a destination in the GotoIf() application, control goes
to the next priority.) From there we speak the number, subtract 1 from COUNT, and go
back to priority two. If COUNT is less than or equal to 0, control goes to priority 10,
and the call is hung up.

The classic example of conditional branching is affectionately known as the anti-girl-
friend logic. If the Caller ID number of the incoming call matches the phone number
of the recipient’s ex-girlfriend, Asterisk gives a different message than it ordinarily
would to any other caller. While somewhat simple and primitive, it’s a good exam-
ple for learning about conditional branching within the Asterisk dialplan.

This example uses a channel variable called CALLERIDNUM, which is automatically set
by Asterisk to the Caller ID number of the inbound call. Let’s assume for the sake of
this example that the victim’s phone number is 885-555-1212:

exten => 123,1,GotoIf($[${CALLERIDNUM} = 8885551212]?20:10)
exten => 123,10,Dial(Zap/4)
exten => 123,20,Playback(abandon-all-hope)
exten => 123,21,Hangup()

,ch06.21282 Page 104 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Conditional Branching | 105

In priority one, we call the GotoIf() application. It tells Asterisk to go to priority 20
if the Caller ID number matches 8885551212, and otherwise to go to priority 10. If the
Caller ID number matches, control of the call goes to priority 20, which plays back
an uninspiring message to the undesired caller. Otherwise, the call attempts to dial
the recipient on channel Zap/4.

Time-Based Conditional Branching with GotoIfTime()
Another way to use conditional branches in your dialplan is with the GotoIfTime()
application. Whereas GotoIf() evaluates an expression to decide what to do,
GotoIfTime() looks at the current system time and uses that to decide whether or not
to follow a different branch in the dialplan.

The most obvious use of this application is to give your callers a different greeting
before and after normal business hours.

The syntax for the GotoIfTime() application looks like this:

GotoIfTime(times,days_of_week,days_of_month,months?label)

In short, GotoIfTime() sends the call to the specified label if the current date and
time match the criteria specified by times, days_of_week, days_of_month, and months.
Let’s look at each argument in more detail:

times
This is a list of one or more time ranges, in 24-hour format. As an example, 9:00
a.m. through 5:00 p.m. would be specified as 09:00-17:00. The day starts at 0:00
and ends at 23:59.

days_of_week
This is a list of one or more days of the week. The days should be specified as
mon, tue, wed, thu, fri, sat, and/or sun. Monday through Friday would be
expressed as mon-fri. Tuesday and Thursday would be expressed as tue,thu.

days_of_month
This is a list of the numerical days of the month. Days are specified by the num-
bers 1 through 31. The 7th through the 12th would be expressed as 7-12, and the
15th and 30th of the month would be written as 15,30.

months
This is a list of one or more months of the year. The months should be written as
jan, feb, mar, apr, and so on.

If you wish to match on all possible values for any of these arguments, simply put an
* in for that argument.

The label argument can be any of the following:

• A priority within the same extension, such as 10

• An extension and a priority within the same context, such as 123,10

,ch06.21282 Page 105 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

106 | Chapter 6: More Dialplan Concepts

• A context, extension, and priority, such as incoming,123,10

• A named priority within the same extension, such as passed

Now that we’ve covered the syntax, let’s look at a couple of examples. The follow-
ing example would match from 9:00 a.m. to 5:59 p.m., on Monday through Friday,
on any day of the month, in any month of the year:

exten => s,1,GotoIfTime(09:00-17:59,mon-fri,*,*?open,s,1)

If the caller calls during these hours, the call will be sent to the first priority of the s
extension in the context named open. If the call is made outside of the specified
times, it will be sent to the next priority of the current extension. This allows you to
easily branch on multiple times, as shown in the next example (note that you should
always put your most specific time matches before the least specific ones):

; If it's any hour of the day, on any day of the week,
; during the fourth day of the month, in the month of of July,
; we're closed
exten => s,1,GotoIfTime(*,*,4,jul?open,s,1)

; During business hours, send calls to the open context
exten => s,2,GotoIfTime(09:00-17:59|mon-fri|*|*?open,s,1)
exten => s,3,GotoIfTime(09:00-11:59|sat|*|*?open,s,1)

; Otherwise, we're closed
exten => s,4,Goto(closed,s,1)

Voicemail
One of the most popular (or, actually, unpopular) features of any modern telephone
system is voicemail. Naturally, Asterisk has a very flexible voicemail system. Some of
the features of Asterisk’s voicemail system include:

• Unlimited password-protected voicemail boxes, each containing mailbox fold-
ers for organizing voicemail

• Different greetings for busy and unavailable states

• Default and custom greetings

• The ability to associate phones with more than one mailbox and mailboxes with
more than one phone

• Email notification of voicemail, with the voicemail optionally attached as a
sound file*

• Voicemail forwarding and broadcasts

* No, you really don’t have to pay for this; and yes, it really does work.

,ch06.21282 Page 106 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Voicemail | 107

• Message-waiting indicator (flashing light or stuttered dial tone) on many types of
phones

• Company directory of employees, based on voicemail boxes

And that’s just the tip of the iceberg! In this section, we’ll introduce you to the fun-
damentals of a typical voicemail setup.

The voicemail configuration is defined in the configuration file called voicemail.conf.
This file contains an assortment of settings that you can use to customize the voice-
mail system to your needs. Covering all the available options in voicemail.conf would
be beyond the scope of this chapter, but the sample configuration file is well docu-
mented and quite easy to follow. For now, look near the bottom of the file, where
voicemail contexts and voicemail boxes are defined.

Just as dialplan contexts keep different parts of your dialplan separate, voicemail
contexts allow you to define different sets of mailboxes that are separate from one
another. This allows you to host voicemail for several different companies or offices
on the same server. Voicemail contexts are defined in the same way as dialplan con-
texts, with square brackets surrounding the name of the context. For our examples,
we’ll be using the [default] voicemail context.

Creating Mailboxes
Inside each voicemail context, we define different mailboxes. The syntax for defin-
ing a mailbox is:

mailbox => password,name[,email[,pager_email[,options]]]

Let’s explain what each part of the mailbox definition does:

mailbox
This is the mailbox number. It usually corresponds with the extension number
of the associated set.

password
This is the numeric password the mailbox owner will use to access her voice-
mail. If the user changes her password, the system will update this field in the
voicemail.conf file.

name
This is the name of the mailbox owner. The company directory uses the text in
this field to allow callers to spell usernames.

email
This is the email address of the mailbox owner. Asterisk can send voicemail noti-
fications (including the voicemail message itself) to the specified email box.

,ch06.21282 Page 107 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

108 | Chapter 6: More Dialplan Concepts

pager_email
This is the email address of the mailbox owner’s pager or cell phone. Asterisk
can send a short voicemail notification message to the specified email address.

options
This field is a list of options that sets the mailbox owner’s time zone and over-
rides the global voicemail settings. There are nine valid options: attach,
serveremail, tz, saycid, review, operator, callback, dialout, and exitcontext.
These options should be in option=value pairs, separated by the pipe character
(|). The tz option sets the user’s time zone to a time zone previously defined in
the [zonemessages] section of voicemail.conf, and the other eight options over-
ride the global voicemail settings with the same names.

A typical mailbox definition might look something like this:

101 => 1234,Joe Public,jpublic@somedomain.com,jpublic@pagergateway.net,tz=central|attach=yes

Continuing with our dialplan from the last chapter, let’s set up voicemail boxes for
John and Jane. We’ll give John a password of 1234 and Jane a password of 4444
(remember, these go in voicemail.conf, not extensions.conf):

[default]
101 => 1234,John Doe,john@asteriskdocs.org,jdoe@pagergateway.tld
102 => 4444,Jane Doe,jane@asteriskdocs.org,jane@pagergateway.tld

Adding Voicemail to the Dialplan
Now that we’ve created mailboxes for Jane and John, let’s allow callers to leave mes-
sages for them if they don’t answer the phone. To do this, we’ll use the VoiceMail()
application.

The VoiceMail() application sends the caller to the specified mailbox, so that he can
leave a message. The mailbox should be specified as mailbox@context, where context
is the name of the voicemail context. The mailbox number can also be prefixed by
the letter b or the letter u. If the letter b is used, the caller will hear the mailbox
owner’s busy message. If the letter u is used, the caller will hear the mailbox owner’s
unavailable message (if one exists).

Let’s use this in our sample dialplan. Previously, we had a line like this in our
[internal] context, which allowed us to call John:

exten => 101,1,Dial(${JOHN},,r)

Now, let’s change it so that if John is busy (on another call), it’ll send us to his voice-
mail, where we’ll hear his busy message (don’t forget that the Dial() application
sends the caller to priority n+101 if the dialed line is busy):

exten => 101,1,Dial(${JOHN},,r)
exten => 101,102,VoiceMail(b101@default)

,ch06.21282 Page 108 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Voicemail | 109

Next, let’s add an unavailable message that the caller will be played if John doesn’t
answer the phone within 10 seconds. Remember, the second argument to the Dial()
application is a timeout. If the call is not answered before the timeout expires, the
call is sent to the next priority. Let’s add a 10-second timeout, and a priority to send
the caller to voicemail if John doesn’t answer in time:

exten => 101,1,Dial(${JOHN},10,r)
exten => 101,2,VoiceMail(u101@default)
exten => 101,102,VoiceMail(b101@default)

If we add these two new priorities and a timeout argument to the Dial() applica-
tion, callers will get John’s voicemail (with the appropriate greeting) if John is either
busy or unavailable. A slight problem remains, however, in that John has no way of
retrieving his messages. Let’s remedy that.

Accessing Voicemail
Users can retrieve their voicemail messages, change their voicemail options, and
record their voicemail greetings by using the VoiceMailMain() application. In its typi-
cal form, VoiceMailMain() is called without any arguments. Let’s add extension 500
to the [internal] context of our dialplan so that internal users can dial it to access
their voicemail messages:

exten => 500,1,VoiceMailMain()

Creating a Dial-by-Name Directory
One last feature of the Asterisk voicemail system we should cover is the dial-by-name
directory. This is created with the Directory() application. This application uses the
names defined in the mailboxes in voicemail.conf to present the caller with a dial-by-
name directory of the users.

Directory() takes up to three arguments: the voicemail context from which to read
the names, the optional dialplan context in which to dial the user, and an option
string (which is also optional). By default, Directory() searches for the user by last
name, but passing the f option forces it to search by first name instead. Let’s add two
dial-by-name directories to the [incoming] context of our sample dialplan, so that
callers can search by either first or last name:

exten => 8,1,Directory(default,incoming,f)
exten => 9,1,Directory(default,incoming)

If callers press 8, they’ll get a directory by first name. If they dial 9, they’ll get the
directory by last name.

,ch06.21282 Page 109 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

110 | Chapter 6: More Dialplan Concepts

Macros
Macros are a very useful construct designed to avoid repetition in the dialplan. They
also help in making changes to the dialplan. To illustrate this point, let’s look at our
sample dialplan again. If you remember the changes we made for voicemail, we
ended up with the following for John’s extension:

exten => 101,1,Dial(${JOHN},10,r)
exten => 101,2,VoiceMail(u101@default)
exten => 101,102,VoiceMail(b101@default)

Now imagine you have a hundred users on your Asterisk system—setting up the
extensions would involve a lot of copying and pasting. Then imagine that you need
to make a change to the way your extensions work. That would involve a lot of edit-
ing, and you’d be almost certain to have errors.

Instead, you can define a macro that contains a list of steps to take, and then have all
of the phone extensions refer to that macro. All you need to change is the macro, and
everything in the dialplan that references that macro will change as well.

If you’re familiar with computer programming, you’ll recognize that
macros are similar to subroutines in many modern programming lan-
guages. If you’re not familiar with computer programming, don’t
worry—we’ll walk you through creating a macro.

The best way to appreciate macros is to see one in action, so let’s move right along.

Defining Macros
For our first macro, let’s take the dialplan logic we used above to set up voicemail for
John and turn it into a macro. Then we’ll use the macro to give John and Jane (and
the rest of their coworkers) the same functionality.

Macro definitions look a lot like contexts. (In fact, you could argue that they really
are small, limited contexts.) You define a macro by placing macro- and the name of
your macro in square brackets, like this:

[macro-voicemail]

Macro names must start with macro-. This distinguishes them from regular contexts.
The commands within the macro are built pretty nearly identically to anything else
in the dialplan—the only limiting factor is that macros use only the s extension. Let’s
add our voicemail logic to the macro, changing the extension to s as we go:

[macro-voicemail]
exten => s,1,Dial(${JOHN},10,r)
exten => s,2,VoiceMail(u101@default)
exten => s,102,VoiceMail(b101@default)

,ch06.21282 Page 110 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Macros | 111

That’s a start, but it’s not perfect, as it’s still specific to John and his mailbox num-
ber. To make the macro generic so that it will work not only for John but also for all
his coworkers, we’ll take advantage of another property of macros: arguments. But
first, let’s see how we call macros in our dialplan.

Calling Macros from the Dialplan
To use a macro in our dialplan, we use the Macro() application. This application
calls the specified macro and passes it any arguments. For example, to call our voice-
mail macro from our dialplan, we can do the following:

exten => 101,1,Macro(voicemail)

The Macro() application also defines several special variables for our use. They
include:

${MACRO_CONTEXT}

The original context in which the macro was called.

${MACRO_EXTEN}

The original extension in which the macro was called.

${MACRO_PRIORITY}

The original priority in which the macro was called.

${ARGn}

The nth argument passed to the macro. For example, the first argument would
be ${ARG1}, the second ${ARG2}, and so on.

As we explained earlier, the way we initially defined our macro was hard-coded for
John, instead of being generic. Let’s change our macro to use ${MACRO_EXTEN} instead
of 101 for the mailbox number. That way, if we call the macro from extension 101
the voicemail messages will go to mailbox 101, if we call the macro from extension
102 messages will go to mailbox 102, and so on:

[macro-voicemail]
exten => s,1,Dial(${JOHN},10,r)
exten => s,2,VoiceMail(u${MACRO_EXTEN}@default)
exten => s,102,VoiceMail(b${MACRO_EXTEN}@default)

Using Arguments in Macros
Okay, now we’re getting closer to having the macro the way we want it, but we still
have one thing left to change—we need to pass in the channel to dial, as it’s cur-
rently still hard-coded for ${JOHN} (remember that we defined the variable JOHN as the

,ch06.21282 Page 111 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

112 | Chapter 6: More Dialplan Concepts

channel to call when we want to reach John). Let’s pass in the channel as an argu-
ment, and then our first macro will be complete:

[macro-voicemail]
exten => s,1,Dial(${ARG1},10,r)
exten => s,2,VoiceMail(u${MACRO_EXTEN}@default)
exten => s,102,VoiceMail(b${MACRO_EXTEN}@default)

Now that our macro is done, we can use it in our dialplan. Here’s how we can call
our macro to provide voicemail to John, Jane, and Jack:

exten => 101,1,Macro(voicemail,${JOHN})
exten => 102,1,Macro(voicemail,${JANE})
exten => 103,1,Macro(voicemail,${JACK})

With 50 or more users, this dialplan will still look neat and organized—we’ll simply
have one line per user, referencing a macro that can be as complicated as required.
We could even have a few different macros for various user types, such as
executives, courtesy_phones, call_center_agents, analog_sets, sales_department,
and so on.

A more advanced version of the macro might look something like this:

[macro-voicemail]
exten => s,1,Dial(${ARG1},20)
exten => s,2,Goto(s-${DIALSTATUS},1)
exten => s-NOANSWER,1,Voicemail(u${MACRO_EXTEN})
exten => s-NOANSWER,2,Goto(incoming,s,1)
exten => s-BUSY,1,Voicemail(b${MACRO_EXTEN})
exten => s-BUSY,2,Goto(incoming,s,1)
exten => _s-.,1,Goto(s-NOANSWER,1)

This macro depends on a nice side effect of the Dial() application: when you use the
Dial() application, it sets the DIALSTATUS variable to indicate whether the call was
successful or not. In this case, we’re handling the NOANSWER and BUSY cases, and treat-
ing all other result codes as a NOANSWER.

Using the Asterisk Database (AstDB)
Having fun yet? It gets even better!

Asterisk provides a powerful mechanism for storing values, called the Asterisk database
(AstDB). The AstDB provides a simple way to store data for use within your dialplan.

For those of you with experience using relational databases such as
PostgreSQL or MySQL, the Asterisk database is not a traditional rela-
tional database. It is a Berkeley DB Version 1 database. There are sev-
eral ways to store data from Asterisk in a relational database, but this
book will not delve into them.

,ch06.21282 Page 112 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Using the Asterisk Database (AstDB) | 113

The Asterisk database stores its data in groupings called families, with values identi-
fied by keys. Within a family, a key may be used only once. For example, if we had a
family called test, we could store only one value with a key called count. Each stored
value must be associated with a family.

Storing Data in the AstDB
To store a new value in the Asterisk database, we use the Set() application,* but
instead of using it to set a channel variable, we use it to set an AstDB variable. For
example, to assign the count key in the test family the value of 1:

exten => 456,1,Set(${DB(test/count)=1})

If a key named count already exists in the test family, its value will be overwritten
with the new value. You can also store values from the Asterisk command line, by
running the command database put family key value. For our example, you would
type database put test count 1.

Retrieving Data from the AstDB
To retrieve a value from the Asterisk database and assign it to a variable, we use the
Set() application again. Let’s retrieve the value of count (again, from the test fam-
ily), assign it to a variable called COUNT, and then speak the value to the caller:

exten => 456,1,Set(DB(test/count)=1)
exten => 456,2,Set(COUNT=${DB(test/count)})
exten => 456,3,SayNumber(${COUNT})

You may also check the value of a given key from the Asterisk command line by run-
ning the command database get family key. To view the entire contents of the
AstDB, use the database show command.

Deleting Data from the AstDB
There are two ways to delete data from the Asterisk database. To delete a key, use
the DBdel() application. It takes the family and key as arguments, like this:

exten => 457,1,DBdel(test/count)

You can also delete an entire key family by using the DBdeltree() application. The
DBdeltree() application takes a single argument: the name of the key family to
delete. To delete the entire test family, do the following:

exten => 457,1,DBdeltree(test)

* Previous versions of Asterisk had applications called DBput() and DBget() that were used to set values in and
retrieve values from the AstDB. If you’re using an old version of Asterisk, you’ll want to use them instead.

,ch06.21282 Page 113 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

114 | Chapter 6: More Dialplan Concepts

To delete keys and key families from the AstDB via the command-line interface, use
the database del key and database deltree family commands, respectively.

Using the AstDB in the Dialplan
There are an infinite number of ways to use the Asterisk database in a dialplan. To
introduce the AstDB, we’ll show two simple examples. The first is a simple counting
example to show that the Asterisk database is persistent (meaning that it survives
system reboots). In the second example, we’ll use the LookupBlacklist() application
to evaluate whether or not a number is on the blacklist and should be blocked.

To begin the counting example, let’s first retrieve a number (the value of the count
key) from the database and assign it to a variable named COUNT. If the key doesn’t
exist, DBget() will send us to priority n+101, where we will set the value to 1. The
next priority will send us back to priority 1. This will happen the very first time we
dial this extension:

exten => 678,1,Set(COUNT=${DB(test/count)})
exten => 678,102,Set(DB(test/count)=1)
exten => 678,103,Goto(1)

Next, we’ll say the current value of COUNT, and then increment COUNT:

exten => 678,1,Set(COUNT=${DB(test/count)})
exten => 678,2,SayNumber(${COUNT})
exten => 678,3,Set(COUNT=$[${COUNT} + 1])
exten => 678,102,Set(DB(test/count)=1)
exten => 678,103,Goto(1)

Now that we’ve incremented COUNT, let’s put the new value back into the database.
Remember that storing a value for an existing key overwrites the previous value:

exten => 678,1,Set(COUNT=${DB(test/count)})
exten => 678,2,SayNumber(${COUNT})
exten => 678,3,Set(COUNT=$[${COUNT} + 1])
exten => 678,4,Set(DB(test/count)=${COUNT})
exten => 678,102,Set(DB(test/count)=1)
exten => 678,103,Goto(1)

Finally, we’ll loop back to the first priority. This way, the application will continue
counting:

exten => 678,1,Set(COUNT=${DB(test/count)})
exten => 678,2,SayNumber(${COUNT})
exten => 678,3,SetVar(COUNT=$[${COUNT} + 1]
exten => 678,4,Set(DB(test/count)=${COUNT})
exten => 678,5,Goto(1)
exten => 678,102,Set(DB(test/count)=1)
exten => 678,103,Goto(1)

,ch06.21282 Page 114 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Handy Asterisk Features | 115

Go ahead and try this example. Listen to it count for a while, and then hang up. When
you dial this extension again, it should continue counting from where it left off. The
value stored in the database will be persistent, even across a restart of Asterisk.

In the next example, we’ll create dialplan logic around the LookupBlacklist() appli-
cation, which checks to see if the current Caller ID number exists in the blacklist.
(The blacklist is simply a family called blacklist in the AstDB.) If LookupBlacklist()
finds the number in the blacklist, it sends the call to priority n+101. Otherwise, the
call continues on with the next priority:

exten => 124,1,LookupBlacklist()
exten => 124,2,Dial(${JOHN})
exten => 124,102,Playback(privacy-you-are-blacklisted)
exten => 124,103,Playback(vm-goodbye)
exten => 124,104,Hangup()

To add a number to the blacklist, run the database put blacklist number 1 com-
mand from the Asterisk command-line interface.

Handy Asterisk Features
Now that we’ve gone over some more of the basics, let’s look at a few popular func-
tions that have been incorporated into Asterisk.

Zapateller()
Zapateller() is a simple Asterisk application that plays a special information tone at
the beginning of a call, which causes auto-dialers (usually used by telemarketers) to
think the line has been disconnected. Not only will they hang up, but their systems
will flag your number as out of service, which could help you avoid all kinds of tele-
marketing calls. To use this functionality within your dialplan, simply call the
Zapateller() application.

We’ll also use the optional nocallerid option so that the tone will be played only
when there is no Caller ID information on the incoming call. For example, you might
use Zapateller() in the s extension of your [incoming] context, like this:

[incomimg]
exten => s,1,Zapateller(nocallerid)
exten => s,2,Playback(enter-ext-of-person)

Call Parking
Another handy feature is called “call parking.” Call parking allows you to place a call
on hold in a “parking lot,” so it can be taken off hold from another extension.
Parameters for call parking (such as the extensions to use, the number of spaces, and

,ch06.21282 Page 115 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

116 | Chapter 6: More Dialplan Concepts

so on) are all controlled within the features.conf configuration file. The [general]
section of the features.conf file contains four settings related to call parking:

parkext
This is the parking lot extension. Transfer a call to this extension, and the sys-
tem will tell you which parking position the call is in. By default, the parking
extension is 700.

parkpos
This option defines the number of parking slots. For example, setting it to 701-
720 creates 20 parking positions, numbered 701 through 720.

context
This is the name of the parking context. To be able to park calls, you must
include this context.

parkingtime
If set, this option controls how long (in seconds) a call can stay in the parking
lot. If the call isn’t picked up within the specified time, the extension that parked
the call will be called back.

You must restart Asterisk after editing features.conf, as the file is read
only on startup. Running the reload command will not cause the
features.conf file to be read.

Also note that because the user needs to be able to transfer the calls to the parking
lot extension, you should make sure you’re using the t and/or T options to the Dial()
application.

So, let’s create a simple dialplan to show off call parking:

[incoming]
include => parkedcalls

exten=103,1,Dial(SIP/Bob,,tT)
exten=104,1,Dial(SIP/Charlie,,tT)

To illustrate how call parking works, say that Alice calls into the system and dials
extension 103, to reach Bob. After a while, Bob transfers the call to extension 700,
which tells him that the call from Alice has been parked in position 701. Bob then
dials Charlie at extension 104, and tells him that Alice is at extension 701. Charlie
then dials extension 701, and begins to talk to Alice. This is a simple and effective
way of allowing callers to be transferred between users.

,ch06.21282 Page 116 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Handy Asterisk Features | 117

Conferencing with MeetMe()
Last but not least, let’s cover setting up an audio conference bridge with the MeetMe()
application.* This application allows multiple callers to converse together, as if they
were all in the same physical location. Some of the main features include:

• The ability to create password-protected conferences

• Conference administration (mute conference, lock conference, kick participants)

• The option of muting all but one participant (useful for company announce-
ments, broadcasts, etc.)

• Static or dynamic conference creation

Let’s walk through setting up a basic conference room. The configuration options for
the MeetMe conferencing system are found in meetme.conf. Inside the configuration file,
you define conference rooms and optional numeric passwords. (If a password is defined
here, it will be required to enter all conferences using that room.) For our example, let’s
set up a conference room at extension 600. First, we’ll set up the conference room in
meetme.conf. We’ll call it 600, and we won’t assign a password at this time:

[rooms]
conf => 600

Now that the configuration file is complete, we’ll need to restart Asterisk so that it
can re-read the meetme.conf file. Next, we’ll add support for the conference room to
our dialplan with the MeetMe() application. MeetMe() takes three arguments: the
name of the conference room (as defined in meetme.conf), a set of options, and the
password the user must enter to join this conference. Let’s set up a simple confer-
ence using room 600, the i option (which announces when people enter and exit the
conference), and a password of 54321:

exten => 600,1,MeetMe(600,i,54321)

That’s all there is to it! When callers enter extension 600, they will be prompted for
the password. If they correctly enter 54321, they will be added to the conference. See
Appendix B for a list of all the options supported by the MeetMe() application.

Another useful application is MeetMeCount(). As its name suggests, this application
counts the number of users in a particular conference room. It takes up to two argu-
ments: the conference room in which to count the number of participants, and
optionally a variable name to assign the count to. If the variable name is not passed
as the second argument, the count is read to the caller:

exten => 601,1,Playback(conf-thereare)
exten => 601,2,MeetMeCount(600)
exten => 601,3,Playback(conf-peopleinconf)

* In the world of legacy PBXs, this type of functionality is very expensive. Either you have to pay big bucks for
a dial-in service, or you have to add an expensive conferencing bridge to your proprietary PBX.

,ch06.21282 Page 117 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

118 | Chapter 6: More Dialplan Concepts

If you pass a variable as the second argument to MeetMeCount(), the count is assigned
to the variable and playback of the count is skipped. You might use this to limit the
number of participants, like this:

; limit the conference room to 10 participants
exten => 600,1,MeetMeCount(600,CONFCOUNT)
exten => 600,2,GotoIf($[${CONFCOUNT} <= 10]?3:100)
exten => 600,3,MeetMe(600,i,54321)
exten => 600,100,Playback(conf-full)

Isn’t Asterisk fun?

Conclusion
In this chapter, we’ve covered a few more of the many applications in the Asterisk
dialplan, and hopefully we’ve given you the seeds from which you can explore the
creation of your own dialplans. As with the previous chapter, we invite you to go
back and re-read any sections that require clarification.

The following chapters take us away from Asterisk for a bit, in order to talk about
some of the technologies that all telephone systems use. We’ll be referring to Aster-
isk a lot, but much of what we want to discuss are things that are common to many
telecom systems.

,ch06.21282 Page 118 Wednesday, August 31, 2005 4:56 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

119

Chapter 7 CHAPTER 7

Understanding Telephony

Utility is when you have one telephone, luxury is when
you have two, opulence is when you have three—and

paradise is when you have none.
—Doug Larson

We’re now going to take a break from Asterisk for a chapter or two, because we
want to spend some time discussing the technologies with which your Asterisk sys-
tem will need to interface. In this chapter, we are going to talk about some of the
technologies of the traditional telephone network—especially those that people most
commonly want to connect to Asterisk.* While tomes could be written about the
technologies in use in telecom networks, the material in this chapter was chosen
based on our experiences in the community, which helped us define the specific
items that might be most useful. Although this knowledge may not be strictly
required in order to configure your Asterisk system, it will be of great benefit when
interconnecting to systems (and talking with people) from the world of traditional
telecommunications.

Analog Telephony
The purpose of the Public Switched Telephone Network (PSTN) is to establish and
maintain audio connections between two endpoints.

Although humans can perceive sound vibrations in the range of 20–20,000 Hz,† most
of the sounds we make when speaking tend to be in the range of 250–3,000 Hz. Since
the purpose of the telephone network is to transmit the sounds of people speaking, it

* We’ll discuss Voice over IP in the next chapter.

† If you want to play around with what different frequencies look like on an oscilloscope, grab a copy of Sound
Frequency Analyzer, from Reliable Software. It’s a really simple and fun way to visualize what sounds “look”
like. The spectrograph gives a good picture of the complex harmonics our voices can generate, as well as an
appreciation for the background sounds that always surround us. You should also try the delightfully annoy-
ing NCH Tone Generator, from NCH Swift Sound.

,ch07.21568 Page 119 Wednesday, August 31, 2005 4:57 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

120 | Chapter 7: Understanding Telephony

was designed with a bandwidth of somewhere in the range of 300–3,500 Hz. This lim-
ited bandwidth means that some sound quality will be lost (as anyone who’s had to lis-
ten to music on hold can attest to), especially in the higher frequencies.

Parts of an Analog Telephone
An analog phone is composed of five parts: the ringer, the dial pad, the hybrid (or
network), and the hook switch and handset (both of which are considered parts of
the hybrid). The ringer, the dial pad, and the hybrid can operate completely indepen-
dently from one another.

Ringer

When the central office (CO) wants to signal an incoming call, it will connect an
alternating current (AC) signal of roughly 90 volts to your circuit. This will cause the
bell in your telephone to produce a ringing sound. (In electronic telephones, this
ringer may be a small electronic warbler rather than a bell. Ultimately, a ringer can
be anything that is capable of reacting to the ringing voltage—for example, strobe
lights are often employed in noisy environments such as factories.)

Ringing voltage can be hazardous. Be very careful to take precautions
when working with an in-service telephone line.

Many people confuse the AC voltage that triggers the ringer with the direct current
(DC) voltage that powers the phone. Remember that the ringer will not respond to
DC voltage, and you’ve got it.

In North America, the number of ringers you can connect to your line is dependent
on the Ringer Equivalence Number (REN) of your various devices. (The REN must
be listed on each device.) The total REN for all devices connected to your line can-
not exceed 5.0. An REN of 1.0 is equivalent to an old-fashioned analog set with an
electromechanical ringer. Some electronic phones have an REN of 0.3 or even less.

Dial pad

When you place a telephone call, you need some way of letting the network know
the address of the party you wish to reach. The dial pad is the portion of the phone
that provides this functionality. In the early days of the PSTN, dial pads were rotary
devices that used pulses to indicate digits. This was a rather slow process, so the tele-
phone companies eventually introduced touch-tone dialing. With touch-tone—also
known as Dual-Tone Multi Frequency (DTMF)—dialing, the dial pad consists of 12
buttons. Each button has two frequencies assigned to it (see Table 7-1).

,ch07.21568 Page 120 Wednesday, August 31, 2005 4:57 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Analog Telephony | 121

When you press a button on your dial pad, the two corresponding frequencies are
transmitted down the line.

We assume that you’ve used a telephone, so we won’t spend any more time on
DTMF.

Hybrid (or network)

The hybrid is a type of transformer that handles the need to combine the signals trans-
mitted and received across a single pair of wires in the PSTN and two pairs of wires in
the handset. One of the functions the hybrid performs is regulating sidetone, which is
the amount of your transmitted signal that is returned to your earpiece—its purpose is
to provide a more natural-sounding conversation. Too much sidetone, and your voice
will sound too loud; too little, and you’ll think the line has gone dead.

Hook switch (or switch hook) . This device signals the state of the telephone circuit to
the CO. When you pick up your telephone, the hook switch closes the loop between
you and the CO, which is seen as a request for a dial tone. When you hang up, the
hook switch opens the circuit, which indicates that the call has ended.*

The hook switch can also be used for signaling purposes. Some electronic analog
phones have a button labeled “Link” that causes an event called a flash. You can per-
form a flash manually by depressing the hook switch for a duration of between 200
and 1,200 milliseconds. If you leave it down for longer than that, the carrier will
assume you’ve hung up. The purpose of the Link button is to handle this timing for
you. If you’ve ever used call waiting or three-way calling on an analog line, you have
performed a hook switch flash for the purpose of signaling the network.

Table 7-1. DTMF digits

1209 Hz 1336 Hz 1477 Hz 1633 Hza

a Notice that this column contains letters that are not typically present as keys on a telephone dial pad. They are part of the DTMF standard
nonetheless, and any proper telephone contains the electronics required to create them, even if it doesn’t contain the buttons themselves.
(These buttons actually do exist on some telephones, which are mostly used in military and government applications.)

697 Hz 1 2 3 A

770 Hz 4 5 6 B

852 Hz 7 8 9 C

941 Hz * 0 # D

* When referring to the state of an analog circuit, people often speak in terms of “off-hook” and “on-hook.”
When your line is “off-hook,” your telephone is “on” a call. If your phone is “on-hook,” the telephone is
essentially “off.”

,ch07.21568 Page 121 Wednesday, August 31, 2005 4:57 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

122 | Chapter 7: Understanding Telephony

Handset. The handset is composed of the transmitter and receiver. It performs the
conversion between the sound energy humans use and the electrical energy the tele-
phone network uses.

Tip and Ring
In an analog telephone circuit, there are two wires. In North America, these wires are
referred to as Tip and Ring.* This terminology comes from the days when telephone
calls were connected by live operators sitting at cord boards. The plugs they used
had two contacts, one located at the tip of the plug and the other connected to the
ring around the middle (Figure 7-1).

The Tip lead is the positive polarity wire. In North America, this wire is typically
green and provides the return path. The Ring wire is the negative polarity wire. In
North America, this wire is normally red. When your telephone is on-hook, this wire
will have a potential of –48V DC with respect to Tip. Off-hook, this voltage drops to
roughly –7V DC.

Digital Telephony
Analog telephony is almost dead.

In the PSTN, the famous Last Mile is the final remaining piece of the telephone net-
work still using technology pioneered well over a hundred years ago.†

One of the primary challenges when transmitting analog signals is that all sorts of
things can interfere with those signals, causing low volume, static, and all manner of
other undesired effects. Instead of trying to preserve an analog waveform over dis-
tances that may span thousands of miles, why not simply measure the characteristics

* They may have other names elsewhere in the world (such as “A” and “B”).

Figure 7-1. Tip and Ring

† “The Last Mile” is a term that was originally used to describe the only portion of the PSTN that had not been
converted to fiber optics: the connection between the central office and the customer. The Last Mile is more
than that, however, as it also has significance as a valuable asset of the traditional phone companies—they
own a connection into your home. The Last Mile is becoming more and more difficult to describe in techni-
cal terms, as there are now so many ways to connect the network to the customer. As a thing of strategic
value to telecom, cable, and other utilities, its importance is obvious.

Ring Tip

,ch07.21568 Page 122 Wednesday, August 31, 2005 4:57 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Digital Telephony | 123

of the original sound and send that information to the far end? The original wave-
form wouldn’t get there, but all the information needed to reconstruct it would.

This is the principle of all digital audio (including telephony): sample the characteris-
tics of the source waveform, store the measured information, and send that data to
the far end. Then, at the far end, use the transmitted information to generate a com-
pletely new audio signal that has the same characteristics as the original. The repro-
duction is so good that the human ear can’t tell the difference.

The principle advantage of digital audio is that the sampled data can be mathemati-
cally checked for errors all along the route to its destination, ensuring that a perfect
duplicate of the original arrives at the far end. Distance no longer affects quality, and
interference can be detected and eliminated.

Pulse-Code Modulation
There are several ways to digitally encode audio, but the most common method (and
the one used in telephony systems) is known as Pulse-Code Modulation (PCM). To
illustrate how this works, let’s go through a few examples.

Digitally encoding an analog waveform

The principle of PCM is that the amplitude of the analog waveform is sampled at
specific intervals so that it can later be recreated. The amount of detail that is cap-
tured is dependent both on the bit-resolution of each sample and on how frequently
the samples are taken. A higher bit-resolution and a higher sampling rate will pro-
vide greater accuracy, but more bandwidth will be required to transmit this more
detailed information.

To get a better idea of how PCM works, consider the waveform displayed in
Figure 7-2.

To digitally encode the wave, it must be sampled on a regular basis, and the ampli-
tude of the wave at each moment in time must be measured. The process of slicing
up a waveform into moments in time and measuring the energy at each moment is
called quantization, or sampling.

The samples will need to be taken frequently enough and will need to capture
enough information to ensure that the far end can recreate a sufficiently similar
waveform. To achieve a more accurate sample, more bits will be required. To explain
this concept, we will start with a very low resolution, using four bits to represent our
amplitude. This will make it easier to visualize both the quantization process itself
and the effect that resolution has on quality.

Figure 7-3 shows the information that will be captured when we sample our sine
wave at four-bit resolution.

,ch07.21568 Page 123 Wednesday, August 31, 2005 4:57 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

124 | Chapter 7: Understanding Telephony

At each time interval, we measure the amplitude of the wave and record the corre-
sponding intensity—in other words, we sample it. You will notice that the four-bit
resolution limits our accuracy. The first sample has to be rounded to 0011, and the
next quantization yields a sample of 0101. Then comes 0100, followed by 1001, 1011,
and so forth. In total, we have 14 samples (in reality, several thousand samples must
be taken per second). If we string together all the values, we can send them to the
other side as:

0011 0101 0100 1001 1011 1011 1010 0001 0101 0101 0000 1100 1100 1010

On the wire, this code might look something like Figure 7-4.

Figure 7-2. A simple sinusoidal (sine) wave

Figure 7-3. Sampling our sine wave using four bits

1100

1011

1010

1001

1000

0000

0001

0010

0011

0100

0101

1101

0110

Am
pl

itu
de

Samples

1100

1011

1010

1001

1000

0000

0001

0010

0011

0100

0101

1101

0110

Am
pl

itu
de

Samples

,ch07.21568 Page 124 Wednesday, August 31, 2005 4:57 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Digital Telephony | 125

When the far end’s digital-to-analog (D/A) converter receives this signal, it can use
the information to plot the samples, as shown in Figure 7-5.

From this information, the waveform can be reconstructed (see Figure 7-6).

Figure 7-4. PCM encoded waveform

Figure 7-5. Plotted PCM signal

Figure 7-6. Delineated signal

0 0
1 1

0
1

0
1

0
1

0 0
1

0 0
1 1

0
1 1 1

0
1 1 1

0
1

0 0 0 0
1

0
1

0
1

0
1

0
1

0 0 0 0
1 1

0 0
1 1

0 0
1

0
1

0

1100

1011

1010

1001

1000

0000

0001

0010

0011

0100

0101

1101

0110

Am
pl

itu
de

Samples

1100

1011

1010

1001

1000

0000

0001

0010

0011

0100

0101

1101

0110

Am
pl

itu
de

Samples

,ch07.21568 Page 125 Wednesday, August 31, 2005 4:57 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

126 | Chapter 7: Understanding Telephony

As you can see if you compare Figure 7-7 with Figure 7-8, this reconstruction of the
waveform is not very accurate. This was done intentionally, to demonstrate an
important point: the quality of the digitally encoded waveform is affected by the res-
olution and rate at which it is sampled. At too low a sampling rate, and with too low
a sample resolution, the audio quality will not be acceptable.

Increasing the sampling resolution and rate

Let’s take another look at our original waveform, this time using five bits to define
our quantization intervals (Figure 7-7).

In reality, there is no such thing as five-bit PCM. In the telephone net-
work, PCM samples are encoded using eight bits.*

We’ll also double our sampling frequency. The points plotted this time are shown in
Figure 7-8.

We now have twice the number of samples, at twice the resolution. Here they are:

00111 01000 01001 01001 01000 00101 10110 11000 11001 11001 11000 10111 10100 10001
00010 00111 01001 01010 01001 00111 00000 11000 11010 11010 11001 11000 10110 10001

When received at the other end, that information can now be plotted as shown in
Figure 7-9.

Figure 7-7. The same waveform, on a higher-resolution overlay

* Other digital audio methods may employ 16 bits or more.

11011
11010
11001
11000
10111
10110
10101
10100
10011
10010
10001
00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011

11100

01111

1 2 3 4 5 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Am
pl

itu
de

Samples
6 8

,ch07.21568 Page 126 Wednesday, August 31, 2005 4:57 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Digital Telephony | 127

From this information, the waveform shown in Figure 7-10 can then be generated.

As you can see, the resultant waveform is a far more accurate representation of the
original. However, you can also see that there is still room for improvement.

Note that 40 bits were required to encode the waveform at 4-bit resolu-
tion, while 156 bits were needed to send the same waveform using 5-bit
resolution (and also doubling the sampling rate). The point is, there is a
tradeoff: the higher the quality of audio you wish to encode, the more
bits will be required to do it, and the more bits you wish to send (in real
time, naturally), the more bandwidth you will need to consume.

Figure 7-8. The same waveform at double the resolution

Figure 7-9. Five-bit plotted PCM signal

11011
11010
11001
11000
10111
10110
10101
10100
10011
10010
10001
00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011

11100

01111

1 2 3 4 5 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Am
pl

itu
de

Samples
6 8

11011
11010
11001
11000
10111
10110
10101
10100
10011
10010
10001
00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011

11100

01111

1 2 3 4 5 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Am
pl

itu
de

Samples
6 8

,ch07.21568 Page 127 Wednesday, August 31, 2005 4:57 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

128 | Chapter 7: Understanding Telephony

Nyquist’s Theorem

So how much sampling is enough? That very same question was considered in the
1920s by an electrical engineer (and AT&T/Bell employee) named Harry Nyquist.
Nyquist’s Theorem* states: “When sampling a signal, the sampling frequency must be
greater than twice the bandwidth of the input signal in order to be able to recon-
struct the original perfectly from the sampled version.”

In essence, what this means is that to accurately encode an analog signal you have to
sample it twice as often as the total bandwidth you wish to reproduce. Since the tele-
phone network will not carry frequencies below 300 Hz and above 4,000 Hz, a sam-
pling frequency of 8,000 samples per second will be sufficient to reproduce any
frequency within the bandwidth of an analog telephone. Keep that 8,000 samples per
second in mind; we’re going to talk about it more later.

Logarithmic companding

So, we’ve gone over the basics of quantization, and we’ve discussed the fact that
more quantization intervals (i.e., a higher sampling rate) give better quality but also
require more bandwidth. Lastly, we’ve discussed the minimum sample rate needed
to accurately measure the range of frequencies we wish to be able to transmit (in the
case of the telephone, it’s 8,000 Hz). This is all starting to add up to a fair bit of data
being sent on the wire, so we’re going to want to talk about companding.

Figure 7-10. Waveform delineated from five-bit PCM

* Nyquist published two papers, “Certain Factors Affecting Telegraph Speed” (1924) and “Certain Topics in
Telegraph Transmission Theory” (1928), in which he postulated what became known as Nyquist’s Theo-
rem. Proven in 1949 by Claude Shannon (“Communication in the Presence of Noise”), it is also referred to
as the Nyquist-Shannon sampling theorem.

11011
11010
11001
11000
10111
10110
10101
10100
10011
10010
10001
00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011

11100

01111

1 2 3 4 5 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Am
pl

itu
de

Samples
6 8

,ch07.21568 Page 128 Wednesday, August 31, 2005 4:57 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Digital Telephony | 129

Companding is a method of improving the dynamic range of a sampling method
without losing important accuracy. It works by quantizing higher amplitudes in a
much coarser fashion than lower amplitudes. In other words, if you yell into your
phone, you will not be sampled as cleanly as you will be when speaking normally.
Yelling is also not good for your blood pressure, so it’s best to avoid it.

Two companding methods are commonly employed: µ-law* in North America, and
A-law in the rest of the world. They operate on the same principles but are other-
wise not compatible with each other.

Companding divides the waveform into cords, each of which has several steps. Quan-
tization involves matching the measured amplitude to an appropriate step within a
cord. The value of the band and cord numbers (as well as the sign—positive or nega-
tive) becomes the signal. The following diagrams will give you a visual idea of what
companding does. They are not based on any standard, but rather were made up for
the purpose of illustration (again, in the telephone network companding will be done
at an eight-bit, not five-bit, resolution).

Figure 7-11 illustrates five-bit companding. As you can see, amplitudes near the zero-
crossing point will be sampled far more accurately than higher amplitudes (either
positive or negative). However, since the human ear, the transmitter, and the receiver
will also tend to distort loud signals, this isn’t really a problem.

A quantized sample might look like Figure 7-12. It yields the following bit stream:

00000 10011 10100 10101 01101 00001 00011 11010 00010 00001 01000 10011 10100 10100
00101 00100 00101 10101 10011 10001 00011 00001 00000 10100 10010 10101 01101 10100
00101 11010 00100 00000 01000

Aliasing

If you’ve ever watched the wheels on a wagon turn backward in an old Western
movie, you’ve seen the effects of aliasing. The frame rate of the movie cannot keep
up with the rotational frequency of the spokes, and a false rotation is perceived.

In a digital audio system (which the modern PSTN arguably is), aliasing always occurs
if frequencies that are greater than one-half the sampling rate are presented to the ana-
log-to-digital (A/D) converter. In PSTN, that is any audio frequencies above 4,000 Hz
(half the sampling rate of 8,000 Hz). This problem is easily corrected by passing the
audio through a low-pass filter† before presenting it to the A/D converter.

* µ-law is often referred to as “u-law” because, let’s face it, how many of us have µ keys on our keyboards? µ
is in fact the Greek letter Mu; thus, you will also see µ-law written (more correctly) as “Mu-law.” When spo-
ken, it is correct to confidently say “Mew-law,” but if folks look at you strange, and you’re feeling generous,
you can help them out and tell them it’s “u-law.” Many people just don’t appreciate trivia.

† A low-pass filter, as its name implies, allows through only frequencies that are lower than its cut-off fre-
quency. Other types of filters are high-pass filters (which remove low frequencies) and band-pass filters
(which filter out both high and low frequencies).

,ch07.21568 Page 129 Wednesday, August 31, 2005 4:57 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

130 | Chapter 7: Understanding Telephony

The Digital Circuit-Switched Telephone Network
For over a hundred years, telephone networks were exclusively circuit-switched.
What this meant was that for every telephone call made, a dedicated connection was
established between the two endpoints, with a fixed amount of bandwidth allocated
to that circuit. Creating such a network was costly, and where distance was con-
cerned, using that network was costly as well. Although we are all predicting the end
of the circuit-switched network, many people still use it every day, and it really does
work rather well.

Figure 7-11. Five-bit companding

10

00

11

00

11

00

10
11

00

11

00

10

00

01

10

11

10

01

00

00

01

10

11

0

1

Sign-bit Cord-bit Step-bit

Low accuracy

Reduced accuracy

Accurate

Highly accurate

Highly accurate

Accurate

Reduced accuracy

Low accuracy

11

01

10

01

10
01

01
00
01
10
11

01
10

01

11

11

Am
pl

itu
de

Samples

,ch07.21568 Page 130 Wednesday, August 31, 2005 4:57 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Digital Circuit-Switched Telephone Network | 131

Circuit Types
In the PSTN, there are many different sizes of circuits serving the various needs of the
network. Between the central office and a subscriber, one or more analog circuits, or a
few dozen channels delivered over a digital circuit, generally suffice. Between PSTN
offices (and with larger customers), fiber-optic circuits are generally used.

Figure 7-12. Quantized and companded at 5-bit resolution

10

00

11

00

11

00

10
11

00

11

00

10

00

01

10

11

10

01

00

00

01

10

11

0

1

Sign-bit Cord-bit Step-bit

Low accuracy

Reduced accuracy

Accurate

Highly accurate

Highly accurate

Accurate

Reduced accuracy

Low accuracy

11

01

10

01

10
01

01
00
01
10
11

01
10

01

11

11

Am
pl

itu
de

Samples

,ch07.21568 Page 131 Wednesday, August 31, 2005 4:57 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

132 | Chapter 7: Understanding Telephony

The humble DS-0, the foundation of it all

Since the standard method of digitizing a telephone call is to record an 8-bit sample
8,000 times per second, we can see that a PCM-encoded telephone circuit will need a
bandwidth of 64,000 bps. This 64-kbps channel is referred to as a DS-0 (that’s Dee-
Ess-Zero). The DS-0 is the fundamental building block of all digital telecommunica-
tions circuits.

Even the ubiquitous analog circuit is sampled into a DS-0 as soon as possible. Some-
times this happens where your circuit terminates at the central office, and some-
times well before.

T-carrier circuits

The venerable T-1 is one of the more recognized digital telephony terms. A T-1 is a
digital circuit consisting of 24 DS-0s multiplexed together into a 1.544-Mbps bit
stream.* This bit stream is properly defined as a DS-1. Voice is encoded on a T-1
using the µ-law companding algorithm.

The European version of the T-1 was developed by the European Con-
ference of Postal and Telecommunications Administrations† (CEPT),
and was first referred to as a CEPT-1. It is now called an E-1.

The E-1 is comprised of 32 DS-0s, but the method of PCM encoding is
different—E-1s use A-law companding. This means that connecting
between an E-1-based network and a T-1-based network will always
require a transcoding step. Note that an E-1, although it has 32 chan-
nels, is also considered a DS-1.

The various other T-carriers (T-2, T-3, and T-4) are multiples of the T-1, each based
on the humble DS-0. Table 7-2 illustrates the relationships between the different T-
carrier circuits.

At densities above T-3, it is very uncommon to see a T-carrier circuit. For these
speeds, optical carrier (OC) circuits may be used.

* The 24 DS-0s use 1.536 Mbps, and the remaining .008 Mbps is used by framing bits.

† Conférence Européenne des Administrations des Postes et des Télécommunications.

Table 7-2. T-carrier circuits

Carrier Equivalent data bitrate Number of DS-0s Data bitrate

T-1 24 DS-0s 24 1.544 Mbps

T-2 4 T-1s 96 6.312 Mbps

T-3 7 T-2s 672 44.736 Mbps

T-4 6 T-3s 4032 274.176 Mbps

,ch07.21568 Page 132 Wednesday, August 31, 2005 4:57 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Digital Circuit-Switched Telephone Network | 133

SONET and OC circuits

The Synchronous Optical Network (SONET) was developed out of a desire to take
the T-carrier system to the next technological level: fiber optics. SONET is based on
the bandwidth of a T-3 (44.736Mbps), with a slight overhead making it 51.84 Mbps.
This is referred to as an OC-1 or STS-1. As Table 7-3 shows, all higher-speed OC cir-
cuits are multiples of this base rate.

SONET was created in an effort to standardize optical circuits, but due to its high
cost, coupled with the value offered by many newer schemes, such as Dense Wave
Division Multiplexing (DWDM), there is some controversy surrounding its future.

Digital Signaling Protocols
As with any circuit, it is not enough for the circuits used in the PSTN to just carry
(voice) data between endpoints. Mechanisms must also be provided to pass informa-
tion about the state of the channel between each endpoint. (Disconnect and answer
supervision are two examples of basic signaling that might need to take place; Caller
ID is an example of a more complex form of signaling.)

Channel Associated Signaling (CAS)

Also known as robbed-bit signaling, CAS is what you will use to transmit voice on a
T-1 when ISDN is not available. Rather than taking advantage of the power of the
digital circuit, CAS simulates analog channels. CAS signaling works by stealing bits
from the audio stream for signaling purposes. Although the effect on audio quality is
not really noticeable, the lack of a powerful signaling channel limits your flexibility.

When configuring a CAS T-1, the signaling options at each end must match. E&M
(Ear & Mouth or recEive & transMit) signaling is generally preferred, as it offers the
best supervision.

CAS is very rarely used on PSTN circuits anymore, due to the superiority of ISDN-
PRI. One of the limitations of CAS is that it does not allow the dynamic assignment
of channels to different functions. Also, Caller ID information (which may not even
be supported) has to be sent as part of the audio stream. CAS is commonly used on
the T-1 link in channel banks, although PRI is sometimes available (and preferable).

Table 7-3. OC circuits

Carrier Equivalent data bitrate Number of DS-0s Data bitrate

OC-1 1 DS-3 (plus overhead) 672 51.840 Mbps

OC-3 3 DS-3s 2016 155.520 Mbps

OC-12 12 DS-3s 8064 622.080 Mbps

OC-48 48 DS-3s 32256 2488.320 Mbps

OC-192 192 DS-3s 129024 9953.280 Mbps

,ch07.21568 Page 133 Wednesday, August 31, 2005 4:57 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

134 | Chapter 7: Understanding Telephony

ISDN

The Integrated Services Digital Network (ISDN) has been around for over 20 years.
Because it separates the channels that carry the traffic (the bearer channels, or B-
channels) from the channel that carries the signaling information (the D-channel),
ISDN allows for the delivery of a much richer set of features than CAS. In the begin-
ning, ISDN promised to deliver much the same sort of functionality that the Internet
has given us, including advanced capabilities for voice, video, and data transfer.

Unfortunately, rather than ratifying a standard and sticking to it, the respective tele-
communications manufacturers all decided to add their own tweaks to the protocol,
in the belief that their versions were superior and would eventually dominate the
market. As a result, getting two ISDN-compliant systems to connect to each other
was often a painful and expensive task. The carriers who had to implement and sup-
port this expensive technology in turn priced it so that it was not rapidly adopted.
Currently, ISDN is rarely used for much more than basic trunking—in fact, the acro-
nym ISDN has become a joke in the industry: “It Still Does Nothing.”

Having said that, ISDN has become quite popular for trunking, and it is now
(mostly) standards-compliant. If you have a PBX with more than a dozen lines con-
nected to the PSTN, there’s a very good chance that you’ll be running an ISDN-PRI
circuit. Also, in places where DSL and cable access to the Internet are not available
(or too expensive), an ISDN-BRI circuit might provide you with an affordable 128-
kbps connection. In much of North America, the use of ISDN-BRI for Internet con-
nectivity has been deprecated in favor of DSL and cable modems, but it’s still very
popular in other parts of the world.

ISDN-BRI/BRA. Basic Rate Interface (or Basic Rate Access) is the flavor of ISDN
designed to service small endpoints such as workstations.

The BRI flavor of the ISDN specification is often referred to simply as “ISDN,” but
this can be a source of confusion, as ISDN is a protocol, not a type of circuit (not to
mention that PRI circuits are also correctly referred to as ISDN!).

A Basic Rate ISDN circuit consists of two 64-kbps B-channels controlled by a 16-
kbps D-channel, for a total of 144 kbps.

Basic Rate ISDN has been a source of much confusion during its life, due to prob-
lems with standards compliance, technical complexity, and poor documentation.
Still, in European countries ISDN-BRI circuits remain quite a popular way of con-
necting to the PSTN.

ISDN-PRI/PRA. The Primary Rate Interface (or Primary Rate Access) flavor of ISDN is
used to provide ISDN service over larger network connections. A Primary Rate ISDN
circuit uses a single DS-0 channel as a signaling link (the D-channel); the remaining
channels serve as B-channels.

,ch07.21568 Page 134 Wednesday, August 31, 2005 4:57 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Packet-Switched Networks | 135

In North America, Primary Rate ISDN is commonly carried on one or more T-1 cir-
cuits. Since a T-1 has 24 channels, a North American PRI circuit typically consists of
23 B-channels and 1 D-channel. For this reason, PRI is often referred to as 23B+D.*

In Europe, a 32-channel E-1 circuit is used, so a Primary Rate ISDN
circuit is referred to as 30B+D (the final channel is used for synchroni-
zation).

Primary Rate ISDN is very popular, due to its technical benefits and generally com-
petitive pricing. If you believe you will require more than a dozen or so PSTN lines,
you should look into Primary Rate ISDN pricing.

From a technical perspective, ISDN-PRI is always preferable to CAS.

Signaling System 7

SS7 is the signaling system used by carriers. It is conceptually similar to ISDN, and it
is instrumental in providing a mechanism for the carriers to transmit the additional
information ISDN endpoints typically need to pass. However, the technology of SS7
is different from that of ISDN—one big difference is that SS7 runs on a completely
separate network from the actual trunks that carry the calls.

SS7 support in Asterisk is on the horizon, as there is much interest in making Aster-
isk compatible with the carrier networks. An open source version of SS7 (http://www.
openss7.org) exists, but work is still needed for full SS7 compliance, and as of this
writing it is not known whether this will be integrated with Asterisk. Another prom-
ising source of SS7 support comes from Sangoma Technologies, who offer SS7 func-
tionality in many of their products.

It should be noted that adding support for SS7 in Asterisk is not going to be as sim-
ple as writing a proper driver. Connecting equipment to an SS7 network will not be
possible without that equipment having passed an extremely rigorous certification
processes. Even then, it seems doubtful that any traditional carrier is going to be in a
hurry to allow such a thing to happen.

Packet-Switched Networks
In the mid-1990s, network performance improved to the point where it became pos-
sible to send a stream of media information in real time across a network connec-
tion. Because the media stream is chopped up into segments, which are then

* PRI is actually quite a bit more flexible than that, as it is possible to span a single PRI circuit across multiple
T-1 spans. This can give rise, for example, to a 47B+D circuit (where a single D-channel serves two T-1s) or
a 46B+2D circuit (where primary and backup D-channels serve a pair of T-1s). You will sometimes see PRI
described as nB+nD, because the number of B- and D-channels is, in fact, quite variable.

,ch07.21568 Page 135 Wednesday, August 31, 2005 4:57 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

136 | Chapter 7: Understanding Telephony

wrapped in an addressing envelope, such connections are referred to as packet-based.
The challenge, of course, is to send thousands of these packets between two end-
points, ensuring that the packets arrive in the same order in which they were sent, in
less than 300 milliseconds, with none lost. This is the essence of Voice over IP.

Conclusion
This chapter has explored the technologies currently in use in the PSTN. In the next
chapter, we will discuss protocols for VoIP: the carrying of telephone connections
across IP-based networks. These protocols define different mechanisms for carrying
telephone conversations, but their significance is far greater than just that. Bringing
the telephone network into the data network will finally erase the line between tele-
phones and computers, which holds the promise of a revolutionary evolution in the
way we communicate.

,ch07.21568 Page 136 Wednesday, August 31, 2005 4:57 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

137

Chapter 8 CHAPTER 8

Protocols for VoIP

The Internet is a telephone system that’s gotten uppity.
—Clifford Stoll

The telecommunications industry spans over 100 years, and Asterisk integrates
most—if not all—of the major technologies that it has made use of over the last cen-
tury. To make the most out of Asterisk, you need not be a professional in all areas,
but understanding the differences between the various codecs and protocols will give
you a greater appreciation and understanding of the system as a whole.

This chapter explains Voice over IP and what makes VoIP networks different from
the traditional circuit-switched voice networks that were the topic of the last chap-
ter. We will explore the need for VoIP protocols, outlining the history and potential
future of each. We’ll also look at security considerations and these protocols’ abili-
ties to work within topologies such as Network Address Translation (NAT). The fol-
lowing VoIP protocols will be discussed:

• IAX

• SIP

• H.323

• MGCP

• Skinny/SCCP

• UNISTIM

Codecs are the means by which analog voice can be converted to a digital signal and
carried across the Internet. Bandwidth at any location is finite, and the number of
simultaneous conversations any particular connection can carry is directly related to
the type of codec implemented. In this chapter, we’ll also explore the differences
between the following codecs in regards to bandwidth requirements (compression
level) and quality:

• G.711

• G.726

,ch08.21908 Page 137 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

138 | Chapter 8: Protocols for VoIP

• G.723.1

• G.729A

• GSM

• iLBC

• Speex

• MP3

We will then conclude the chapter with a discussion of how voice traffic can be
routed reliably, what causes echo and how to minimize it, and how Asterisk controls
the authentication of inbound and outbound calls.

The Need for VoIP Protocols
The basic premise of VoIP is the packetization* of audio streams for transport over
Internet Protocol–based networks. The challenges to accomplishing this relate to the
manner in which humans communicate. Not only must the signal arrive in essen-
tially the same form that it was transmitted in, but it needs to do so in less than 300
milliseconds. If packets are lost or delayed, there will be degradation in the quality of
the communications experience.

The transport protocols that collectively are called “the Internet” were not originally
designed with real-time streaming of media in mind. Endpoints were expected to
resolve missing packets by waiting longer for them to arrive, requesting retransmis-
sion, or, in some cases, considering the information to be gone for good and simply
carrying on without it. In a typical voice conversation, these mechanisms will not
serve. Our conversations do not adapt well to the loss of letters or words, nor to any
appreciable delay between transmittal and receipt.

The traditional PSTN was designed specifically for the purpose of voice transmis-
sion, and it is perfectly suited to the task from a technical standpoint. From a flexibil-
ity standpoint, however, its flaws are obvious to even people with a very limited
understanding of the technology. VoIP holds the promise of incorporating voice
communications into all the other protocols we carry on our networks, but due to
the special demands of a voice conversation, special skills are needed to design,
build, and maintain these networks.

The problem with packet-based voice transmission stems from the fact that the way
in which we speak is totally incompatible with the way in which IP transports data.
Speaking and listening consist of the relaying of a stream of audio, whereas the

* This word hasn’t quite made it into the dictionary, but it is a term that is becoming more and more common.
It refers to the process of chopping a steady stream of information into discreet chunks (or packets), suitable
for delivery independently of one another.

,ch08.21908 Page 138 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

VoIP Protocols | 139

Internet protocols are designed to chop everything up, encapsulate the bits of infor-
mation into thousands of packages, and then deliver each package in whatever way
possible to the far end. Clearly, some sort of bridge was required.

VoIP Protocols
The mechanism for carrying a VoIP connection generally involves a series of signaling
transactions between the endpoints (and gateways in between), culminating in two
persistent media streams (one for each direction) that carry the actual conversation.
There are several protocols in existence to handle this. In this section, we will discuss
some of those that are important to VoIP in general and to Asterisk specifically.

IAX (The “Inter-Asterisk eXchange” Protocol)
The test of your Asterisk-ness comes when you have to pronounce the name of this
protocol. Newbies say “eye-ay-ex”; those in the know say “eeks.” IAX* is an open
protocol, meaning that anyone can download and develop for it, but it is not yet a
standard of any kind.

In Asterisk, IAX is supported by the chan_iax2.so module.

History

The IAX protocol was developed by Digium for the purpose of communicating with
other Asterisk servers (hence “the Inter-Asterisk eXchange protocol”). IAX is a trans-
port protocol (much like SIP) that uses a single UDP port (4569) for both the chan-
nel signaling and Realtime Transport Protocol (RTP) streams. As discussed below,
this makes it easier to firewall and more likely to work behind NAT.

IAX also has the unique ability to trunk multiple sessions into one dataflow, which
can be a tremendous bandwidth advantage when sending a lot of simultaneous chan-
nels to a remote box. Trunking allows multiple data streams to be represented with a
single datagram header, to lower the overhead associated with individual channels.
This helps to lower latency and reduce the processing power and bandwidth
required, allowing the protocol to scale much more easily with a large number of
active channels between endpoints.

Future

Since IAX was optimized for voice, it has received some criticism for not better sup-
porting video—but in fact, IAX holds the potential to carry pretty much any media

* Officially, the current version is IAX2, but all support for IAX1 has been dropped, so whether you say “IAX”
or “IAX2,” it is expected that you are talking about the Version 2.

,ch08.21908 Page 139 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

140 | Chapter 8: Protocols for VoIP

stream desired. Because it is an open protocol, future media types are certain to be
incorporated as the community desires them.

Security considerations

IAX includes the ability to authenticate in three ways: plain text, MD5 hashing, and
RSA key exchange. This, of course, does nothing to encrypt the media path or head-
ers between endpoints. Many solutions include using a Virtual Private Network
(VPN) appliance or software to encrypt the stream in another layer of technology,
which requires the endpoints to pre-establish a method of having these tunnels con-
figured and operational. In the future, IAX may be able to encrypt the streams
between endpoints with the use of an exchanged RSA key, or dynamic key exchange
at call setup, allowing the use of automatic key rollover. This would be very attrac-
tive for creating a secure link with an institution such as your bank. The various law
enforcement agencies, however, are going to want some level of access to such
connections.

IAX and NAT

The IAX2 protocol was deliberately designed to work from behind devices perform-
ing NAT. The use of a single UDP port for both signaling and transmission of media
also keeps the number of holes required in your firewall to a minimum. These con-
siderations have helped make IAX one of the easiest protocols (if not the easiest) to
implement in secure networks.

SIP
The Session Initiation Protocol (SIP) has taken the world of VoIP by storm. Origi-
nally considered little more than an interesting idea, SIP now seems poised to
dethrone the mighty H.323 as the VoIP protocol of choice—certainly at the end-
points of the network. The premise of SIP is that each end of a connection is a peer,
and the protocol negotiates capabilities between them. What makes SIP compelling
is that it is a relatively simple protocol, with a syntax similar to that of other familiar
protocols such as HTTP and SMTP.

SIP is supported in Asterisk with the chan_sip.so module.

History

SIP was originally submitted to the Internet Engineering Task Force (IETF) in Febru-
ary of 1996 as “draft-ietf-mmusic-sip-00.” The initial draft looked nothing like the
SIP we know today and contained only a single request type: a call setup request. In
March of 1999, after 11 revisions, SIP RFC 2543 was born.

At first, SIP was all but ignored, as H.323 was considered the protocol of choice for
VoIP transport negotiation. However, as the buzz grew, SIP began to gain popularity,

,ch08.21908 Page 140 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

VoIP Protocols | 141

and while there may be a lot of different factors that accelerated its growth, we’d like
to think that a large part of its success is due to its freely available specification.

Future

SIP has earned its place as the protocol that justified VoIP. All new user and enter-
prise products are expected to support SIP, and any existing products will now be a
tough sell unless a migration path to SIP is offered. SIP is widely expected to deliver
far more than VoIP capabilities, including the ability to transmit video, music, and
any type of real-time multimedia. SIP is poised to deliver the majority of new applica-
tions over the next few years.

Security considerations

SIP uses a challenge/response system to authenticate users. An initial INVITE is sent
to the proxy with which the end device wishes to communicate. The proxy then
sends back a 407 Proxy Authorization Request message, which contains a random
set of characters referred to as a “nonce.” This nonce is used along with the pass-
word to generate an MD5 hash, which is then sent back in the subsequent INVITE.
Assuming the MD5 hash matches the one that the proxy generated, the client is then
authenticated.

Denial of Service (DoS) attacks are probably the most common type of attack on
VoIP communications. A DoS attack can occur when a large number of invalid
INVITE requests are sent to a proxy server in an attempt to overwhelm the system.
These attacks are relatively simple to implement, and their effects on the users of the
system are immediate. SIP has several methods of minimizing the effects of DoS
attacks, but ultimately they are impossible to prevent.

SIP implements a scheme to guarantee that a secure, encrypted transport mechanism
(namely Transport Layer Security, or TLS) is used to establish communication
between the caller and the domain of the callee. Beyond that, the request is sent
securely to the end device, based upon the local security policies of the network.
Note that the encryption of the media (that is, the RTP stream) is beyond the scope
of SIP itself and must be dealt with separately.

More information regarding SIP security considerations, including registration
hijacking, server impersonation, and session teardown, can be found in Section 26 of
SIP RFC 3261.

SIP and NAT

Probably the biggest technical hurdle SIP has to conquer is the challenge of carrying
out transactions across a NAT layer. Because SIP encapsulates addressing information
in its data frames, and NAT happens at a lower network layer, the addressing informa-
tion is not modified, and thus the media streams will not have the correct addressing

,ch08.21908 Page 141 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

142 | Chapter 8: Protocols for VoIP

information needed to complete the connection when NAT is in place. In addition to
this, the firewalls normally integrated with NAT will not consider the incoming media
stream to be part of the SIP transaction, and will block the connection.

H.323
This International Telecommunication Union (ITU) protocol was originally designed
to provide an IP transport mechanism for video-conferencing. It has become the stan-
dard in IP-based video-conferencing equipment, and it briefly enjoyed fame as a VoIP
protocol as well. While there is much heated debate over whether SIP or H.323 (or
IAX) will dominate the VoIP protocol world, in Asterisk, H.323 has largely been depre-
cated in favour of IAX and SIP. H.323 has not enjoyed much success among users and
enterprises, although it is still the most widely used VoIP protocol among carriers.

The two versions of H.323 supported in Asterisk are handled by the modules chan_
h323.so (supplied with Asterisk) and chan_oh323.so (available as a free add-on).

You have probably used H.323 without even knowing it—Microsoft’s
NetMeeting client is arguably the most widely deployed H.323 client.

History

H.323 was developed by the ITU in May of 1996 as a means to transmit voice, video,
data, and fax communications across an IP-based network while maintaining con-
nectivity with the PSTN. Since that time, H.323 has gone through several versions
and annexes (which add functionality to the protocol), allowing it to operate in pure
VoIP networks and more widely distributed networks.

Future

The future of H.323 is a subject of hot debate. If the media is any measure, it doesn’t
look good for H.323; it hardly ever gets mentioned (certainly not with the regularity
of SIP). H.323 is commonly regarded as technically superior to SIP, but, as with so
many other technologies, that ultimately might not matter. One of the factors that
makes H.323 unpopular is its complexity—although many argue that the once-sim-
ple SIP is starting to suffer from the same problem.

H.323 still carries by far the majority of worldwide carrier VoIP traffic, but as people
become less and less dependent on traditional carriers for their telecom needs, the
future of H.323 becomes more difficult to predict with any certainty. While H.323
may not be the protocol of choice for new implementations, we can certainly expect
to have to deal with H.323 interoperability issues for some time to come.

,ch08.21908 Page 142 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

VoIP Protocols | 143

Security considerations

H.323 is a relatively secure protocol and does not require many security consider-
ations beyond those that are common to any network communicating with the Inter-
net. Since H.323 uses the RTP protocol for media communications, it does not
natively support encrypted media paths. The use of a VPN or other encrypted tunnel
between endpoints is the most common way of securely encapsulating communica-
tions. Of course, this has the disadvantage of requiring the establishment of these
secure tunnels between endpoints, which may not always be convenient (or even
possible). As VoIP becomes used more often to communicate with financial institu-
tions such as banks, we’re likely to require extensions to the most commonly used
VoIP protocols to natively support strong encryption methods.

H.323 and NAT

The H.323 standard uses the Internet Engineering Task Force (IETF) RTP protocol
to transport media between endpoints. Because of this, H.323 has the same issues as
SIP when dealing with network topologies involving NAT. The easiest method is to
simply forward the appropriate ports through your NAT device to the internal client.

To receive calls, you will always need to forward TCP port 1720 to the client. In
addition, you will need to forward the UDP ports for the RTP media and RTCP con-
trol streams (see the manual for your device for the port range it requires). Older cli-
ents, such as MS Netmeeting, will also require TCP ports forwarded for H.245
tunneling (again, see your client’s manual for the port number range).

If you have a number of clients behind the NAT device, you will need to use a gate-
keeper running in proxy mode. The gatekeeper will require an interface attached to
the private IP subnet and the public Internet. Your H.323 client on the private IP
subnet will then register to the gatekeeper, which will proxy calls on the clients’
behalf. Note that any external clients that wish to call you will also be required to
register with the proxy server.

At this time, Asterisk can’t act as an H.323 gatekeeper. You’ll have to use a separate
application, such as the open source OpenH323 Gatekeeper (http://www.gnugk.org).

MGCP
The Media Gateway Control Protocol (MGCP) also comes to us from the IETF.
While MGCP deployment is more widespread than one might think, it is quickly los-
ing ground to protocols such as SIP and IAX. Still, Asterisk loves protocols, so natu-
rally it has rudimentary support for it.

,ch08.21908 Page 143 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

144 | Chapter 8: Protocols for VoIP

MGCP is defined in RFC 3435.* It was designed to make the end devices (such as
phones) as simple as possible, and have all the call logic and processing handled by
media gateways and call agents. Unlike SIP, MGCP uses a centralized model. MGCP
phones cannot directly call other MGCP phones; they must always go through some
type of controller.

Asterisk supports MGCP through the chan_mgcp.so module, and the endpoints are
defined in the configuration file mgcp.conf. Since Asterisk provides only basic call
agent services, it cannot emulate an MGCP phone (to register to another MGCP con-
troller as a user agent, for example).

If you have some MGCP phones lying around, you will be able to use them with
Asterisk. If you are planning to put MGCP phones into production on an Asterisk sys-
tem, keep in mind that the community has moved on to more popular protocols, and
you will therefore need to budget your software support needs accordingly. If possi-
ble (for example, with Cisco phones), you should upgrade MGCP phones to SIP.

Proprietary Protocols
Finally, let’s take a look at two proprietary protocols that are supported in Asterisk.

Skinny/SCCP

The Skinny Client Control Protocol (SCCP) is proprietary to Cisco VoIP equipment.
It is the default protocol for endpoints on a Cisco Call Manager PBX. Skinny is sup-
ported in Asterisk, but if you are connecting Cisco phones to Asterisk, it is generally
recommended that you obtain SIP images for any phones that support it and con-
nect via SIP instead.

UNISTIM

Support for Nortel’s proprietary VoIP protocol, UNISTIM, has recently been added
to Asterisk. This remarkable milestone means that Asterisk is the first PBX in history
to natively support proprietary IP terminals from the two biggest players in VoIP,
Nortel and Cisco.

Codecs
Codecs are generally understood to be various mathematical models used to digitally
encode (and compress) analog audio information. Many of these models take into
account the human brain’s ability to form an impression from incomplete informa-
tion. We’ve all seen optical illusions; likewise, voice-compression algorithms take

* RFC 3435 obsoletes RFC 2705.

,ch08.21908 Page 144 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Codecs | 145

advantage of our tendency to interpret what we believe we should hear, rather than
what we actually hear.* The purpose of the various encoding algorithms is to strike a
balance between efficiency and quality.†

Originally, the term CODEC referred to a COder/DECoder: a device that converts
between analog and digital. Now, the term seems to relate more to COmpression/
DECompression.

Before we dig into the individual codecs, take a look at Table 8-1—it’s a quick refer-
ence that you may want to refer back to.

G.711

G.711 is the fundamental codec of the PSTN. In fact, if someone refers to PCM (dis-
cussed in the previous chapter) with respect to a telephone network, you are allowed
to think of G.711. Two companding methods are used: µ-law in North America and
A-law in the rest of the world. Either one delivers an 8-bit word transmitted 8,000
times per second. If you do the math, you will see that this requires 64,000 bits to be
transmitted per second.

Many people will tell you that G.711 is an uncompressed codec. This is not exactly
true, as companding is considered a form of compression. What is true is that G.711
is the base codec from which all of the others are derived.

* “Aoccdrnig to rsereach at an Elingsh uinervtisy, it deosn’t mttaer in waht oredr the ltteers in a wrod are, the
olny iprmoetnt tihng is taht frist and lsat ltteres are in the rghit pclae. The rset can be a toatl mses and you
can sitll raed it wouthit a porbelm. Tihs is bcuseae we do not raed ervey lteter by istlef, but the wrod as a
wlohe.” (The source of this quote is unknown—see http://www.bisso.com/ujg_archives/000228.html.) Tihs
is ture with snoud, too.

† On an audio CD, quality is far more important than bandwidth, so the audio is quantized at 16 bits (times
2, as it’s stereo), with a sampling rate of 44,100 Hz. Considering that the CD was invented in the late 1970s,
this was quite impressive stuff. The telephone network does not require this level of quality (and needs to
optimize bandwidth), so telephone signals are encoded using 8 bits, at a sampling frequency of 8,000 Hz.

Table 8-1. Codec quick reference

Codec Data bitrate (kbps) Licence required?

G.711 64 kbps No

G.726 16, 24, or 32 kbps No

G.723.1 5.3 or 6.3 kbps Yes (no for passthrough)

G.729A 8 kbps Yes (no for passthrough)

GSM 13 kbps No

iLBC 13.3 kbps (30-ms frames) or 15.2 kbps (20-ms frames) No

Speex Variable (between 2.15 and 22.4 kbps) No

,ch08.21908 Page 145 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

146 | Chapter 8: Protocols for VoIP

G.726

This codec has been around for some time (it used to be G.721, which is now obso-
lete), and it is one of the original compressed codecs. It is also known as Adaptive
Differential Pulse-Code Modulation (ADPCM), and it can run at several bitrates. The
most common rates are 16 kbps, 24 kbps, and 32 kbps. As of this writing, Asterisk
currently supports only the ADPCM-32 rate, which is far and away the most popu-
lar rate for this codec.

G.726 offers quality nearly identical to G.711, but it uses only half the bandwidth.
This is possible because rather than sending the result of the quantization measure-
ment, it sends only enough information to describe the difference between the cur-
rent sample and the previous one. G.726 fell from favor in the 1990s due to its
inability to carry modem and fax signals, but because of its bandwidth/CPU perfor-
mance ratio it is now making a comeback. G.726 is especially attractive because it
does not require a lot of computational work from the system.

G.723.1

Not to be confused with G.723 (which is another obsolete version of ADPCM), this
codec is designed for low-bitrate speech. It has two data bitrate settings: 5.3 kbps
and 6.3 kbps. G.723.1 is one of the codecs required for compliance with the H.323
protocol (although other codecs may be employed by H.323). It is currently encum-
bered by patents and thus requires licensing if used in commercial applications.
What this means is that while you can switch two G.723.1 calls through your Aster-
isk system, you are not allowed to decode them without a license.

G.729A

Considering how little bandwidth it uses, G.729A delivers impressive sound quality.
It does this through the use of Conjugate-Structure Algebraic-Code-Excited Linear
Prediction (CS-ACELP).* Because of patents, you can’t use G729A without paying a
licensing fee; however, it is extremely popular and is thus well supported on many
different phones and systems.

To achieve its impressive compression ratio, this codec requires an equally impres-
sive amount of effort from the CPU. In an Asterisk system, the use of heavily com-
pressed codecs will quickly bog down the CPU.

G.729A uses 8 kbps of bandwidth.

* CELP is a popular method of compressing speech. By mathematically modeling the various ways humans
make sounds, a codebook of sounds can be built. Rather than sending an actual sampled sound, a code cor-
responding to the sound is then sent. (Of course, there is much more to it than that.) Jason Woodward’s
Speech Coding page (http://www-mobile.ecs.soton.ac.uk/speech_codecs/) is a source of helpful information
for the non-mathematically inclined. This is fairly heavy stuff, though, so wear your thinking cap.

,ch08.21908 Page 146 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Codecs | 147

GSM

GSM is the darling codec of Asterisk. This codec does not come encumbered with a
licensing requirement the way that G.723.1 and G.729A do, and it offers outstand-
ing performance with respect to the demand it places on the CPU. The sound qual-
ity is generally considered to be of a lesser grade than that produced by G.729A, but
as much of this comes down to personal opinion, be sure to try it out.

GSM operates at 13 kbps.

iLBC

The Internet Low Bitrate Codec (iLBC) provides an attractive mix of low bandwidth
usage and quality, and it is especially well suited to sustaining reasonable quality on
lossy network links.

Naturally, Asterisk supports it (and support elsewhere is growing), but it is not as
popular as the ITU codecs and thus may not be compatible with common IP tele-
phones and commercial VoIP systems. IETF RFCs 3951 and 3952 have been pub-
lished in support of iLBC, and iLBC is on the IETF standards track.

Because iLBC uses complex algorithms to achieve its high levels of compression, it
has a fairly high CPU cost in Asterisk.

While you are allowed to use iLBC without paying royalty fees, the holder of the
iLBC patent, Global IP Sound (GIPS), wants to know whenever you use it in a com-
mercial application. The way you do that is by downloading and printing a copy of
the iLBC license, signing it, and returning it to them. If you want to read about iLBC
and its license, you can do so at http://www.ilbcfreeware.org.

iLBC operates at 13.3 kbps (30-ms frames) and 15.2 kbps (20-ms frames).

Speex

Speex is a Variable Bitrate (VBR) codec, which means that it is able to dynamically
modify its bitrate to respond to changing network conditions. It is offered in both
narrowband and wideband versions, depending on whether you want telephone
quality or better.

Speex is a totally free codec, licensed under the Xiph.org variant of the BSD license.

An Internet draft for Speex is available, and more information about Speex can be
found at its home page (http://www.speex.org).

Speex can operate at anywhere from 2.15 to 22.4 kbps, due to its variable bitrate

,ch08.21908 Page 147 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

148 | Chapter 8: Protocols for VoIP

MP3

Sure thing, MP3 is a codec. Specifically, it’s the Moving Picture Experts Group Audio
Layer 3 Encoding Standard.* With a name like that, it’s no wonder we call it MP3! In
Asterisk, the MP3 codec is typically used for Music on Hold (MoH). MP3 is not a
telephony codec, as it is optimized for music, not voice; nevertheless, it’s very popu-
lar with VoIP telephony systems as a method of delivering Music on Hold.

Be aware that music cannot usually be broadcast without a license.
Many people assume that there is no legal problem with connecting a
radio station or CD as a Music on Hold source, but this is very rarely
true.

Quality of Service
Quality of Service, or QoS as it’s more popularly termed, refers to the challenge of
delivering a time-sensitive stream of data across a network that was designed to
deliver data in an ad hoc, best-effort sort of way. Although there is no hard rule, it is
generally accepted that if you can deliver the sound produced by the speaker to the
listener’s ear within 300 milliseconds, a normal flow of conversation is possible.
When delay exceeds 500 milliseconds, it becomes difficult to avoid interrupting each
other. Beyond one second, normal conversation becomes extremely awkward.

In addition to getting it there on time, it is also essential to ensure that the transmit-
ted information arrives intact. Too many lost packets will prevent the far end from
completely reproducing the sampled audio, and gaps in the data will be heard as
static or, in severe cases, entire missed words or sentences.

TCP, UDP, and SCTP
If you’re going to send data on an IP-based network, it will be transported using one
of the three transport protocols discussed here.

Transmission Control Protocol

The Transmission Control Protocol (TCP) is almost never used for VoIP, for while it
does have mechanisms in place to ensure delivery, it is not inherently in any hurry to
do so. Unless you have an extremely low-latency interconnection between the two
endpoints, TCP is going to tend to cause more problems than it solves.

The purpose of TCP is to guarantee the delivery of packets. In order to do this, sev-
eral mechanisms are implemented, such as packet numbering (for reconstructing

* If you want to learn all about MPEG audio, do a web search for Davis Pan’s paper entitled “A Tutorial on
MPEG/Audio Compression.”

,ch08.21908 Page 148 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Quality of Service | 149

blocks of data), delivery acknowledgment, and re-requesting lost packets. In the
world of VoIP, getting the packets to the endpoint quickly is paramount—but 20
years of cellular telephony has trained us to tolerate a few lost packets.*

TCP’s high processing overhead, state management, and acknowledgment of arrival
work well for transmitting large amounts of data, but it simply isn’t efficient enough
for real-time media communications.

User Datagram Protocol

Unlike TCP, the User Datagram Protocol (UDP) does not offer any sort of delivery
guarantee. Packets are placed on the wire as quickly as possible and released into the
world to find their way to their final destinations, with no word back as to whether
they get there or not. Since UDP itself does not offer any kind of guarantee that the
data will arrive,† it achieves its efficiency by spending very little effort on what it is
transporting.

TCP is a more “socially responsible” protocol, because the bandwidth
is more evenly distributed to clients connecting to a server. As the per-
centage of UDP traffic increases, it is possible that a network could
become overwhelmed.

Stream Control Transmission Protocol

Approved by the IETF as a proposed standard in RFC 2960, SCTP is a relatively new
transport protocol. From the ground up, it was designed to address the shortcom-
ings of both TCP and UDP, especially as related to the types of services that used to
be delivered over circuit-switched telephony networks.

Some of the goals of SCTP were:

• Better congestion-avoidance techniques (specifically, avoiding Denial of Service
attacks)

• Strict sequencing of data delivery

• Lower latency for improved real-time transmissions

By overcoming the major shortcomings of TCP and UDP, the SCTP developers
hoped to create a robust protocol for the transmission of SS7 and other types of
PSTN signaling over an IP-based network.

* The order of arrival is important in voice communication, because the audio will be processed and sent to
the caller ASAP. However, with a jitter buffer the order of arrival isn’t as important, as it provides a small
window of time in which the packets can be reordered before being passed on to the caller.

† Keep in mind that the upper-layer protocols or applications can implement their own packet acknowledg-
ment systems.

,ch08.21908 Page 149 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

150 | Chapter 8: Protocols for VoIP

Differentiated Service
Differentiated service, or DiffServ, is not so much a QoS mechanism as a method by
which traffic can be flagged and given specific treatment. Obviously, DiffServ can
help to provide QoS by allowing certain types of packets to take precedence over
others. While this will certainly increase the chance of a VoIP packet passing quickly
through each link, it does not guarantee anything.

Guaranteed Service
The ultimate guarantee of QoS is provided by the PSTN. For each conversation, a
64-kbps channel is completely dedicated to the call—the bandwidth is guaranteed.
Similarly, protocols that offer guaranteed service can ensure that a required amount
of bandwidth is dedicated to the connection being served. As with any packetized
networking technology, these mechanisms generally operate best when traffic is
below maximum levels. When a connection approaches its limits, it is next to impos-
sible to eliminate degradation.

MPLS

Multiprotocol Label Switching (MPLS) is a method for engineering network traffic
patterns independent of layer-3 routing tables. The protocol works by assigning
short labels (MPLS frames) to network packets, which routers then use to forward
the packets to the MPLS egress router, and ultimately to their final destinations. Tra-
ditionally, routers make an independent forwarding decision based on an IP table
lookup at each hop in the network. In an MPLS network, this lookup is performed
only once, when the packet enters the MPLS cloud at the ingress router. The packet
is then assigned to a stream, referred to as a Label Switched Path (LSP), and identi-
fied by a label. The label is used as a lookup index in the MPLS forwarding table, and
the packet traverses the LSP independent of layer-3 routing decisions. This allows
the administrators of large networks to fine-tune routing decisions and to make the
best use of network resources. Additionally, information can be associated with a
label to prioritize packet forwarding.

RSVP

MPLS contains no method to dynamically establish LSPs, but you can use the Reser-
vation protocol (RSVP) with MPLS. RSVP is a signaling protocol used to simplify the
establishment of LSPs and to report problems to the MPLS ingress router. The
advantage of using RSVP in conjunction with MPLS is the reduction in administra-
tive overhead. If you don’t use RSVP with MPLS, you’ll have to go to every single
router and configure the labels and each path manually. Using RSVP makes the net-
work more dynamic by distributing control of labels to the routers. This enables the
network to become more responsive to changing conditions, because it can be set up
to change the paths based on certain conditions, such as a certain path going down

,ch08.21908 Page 150 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Echo | 151

(perhaps due to a faulty router). The configuration within the router will then be able
to use RSVP to distribute new labels to the routers in the MPLS network, with no (or
minimal) human intervention.

Best Effort
The simplest, least expensive approach to QoS is not to provide it at all—the “best
effort” method. While this might sound like a bad idea, it can in fact work very well.
Any VoIP call that traverses the public Internet is almost certain to be best effort, as
QoS mechanisms are not yet common in this environment.

Echo
You may not realize it, but echo has been a problem in the PSTN for as long as there
have been telephones. You probably haven’t often experienced it, because the tele-
com industry has spent large sums of money designing expensive echo cancellation
devices. Also, when the endpoints are physically close—e.g., when you phone your
neighbor down the street—the delay is so minimal that anything you transmit will be
returned back so quickly that it will be indistinguishable from the sidetone* normally
occurring in your telephone.

Why Echo Occurs
Before we discuss measures to deal with echo, let’s first take a look at why echo
occurs in the analog world.

If you hear echo, it’s not your phone that’s causing the problem; it’s the far end of
the circuit. Conversely, echo heard on the far end is being generated at your end.
Echo is caused by the fact that an analog local loop circuit has to transmit and
receive on the same pair of wires. If this circuit is not electrically balanced, or if a
low-quality telephone is connected to the end of the circuit, signals it receives can be
reflected back, becoming part of the return transmission. When this reflected circuit
gets back to you, you will hear the words you spoke just moments before. The
human ear will perceive an echo after a delay of roughly 40 milliseconds.

In a cheap telephone, it is possible for echo to be generated in the body of the hand-
set. This is why some cheap IP phones can cause echo even when the entire end-to-
end connection does not contain an analog circuit.† In the VoIP world, echo is usu-
ally introduced either by an analog circuit somewhere in the connection, or by a

* As discussed in Chapter 7, sidetone is a function in your telephone that returns part of what you say back to
your own ear, to provide a more natural-sounding conversation.

† Actually, the handset in any phone, be it traditional or VoIP, is an analog connection.

,ch08.21908 Page 151 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

152 | Chapter 8: Protocols for VoIP

cheap endpoint reflecting back some of the signal (e.g., feedback through a hands-
free or poorly designed handset). A good rule of thumb is to keep latency to less than
250 milliseconds.

Managing Echo
In the zconfig.h configuration file, you can choose from one of several echo canceller
algorithms, with the default being MARK2. Experiment with the various echo can-
cellers on your network to determine the best one for your environment. Asterisk
also has an option in the zconfig.h file to make the echo cancellation more aggres-
sive. You can enable it by uncommenting the following line:

#define AGGRESSIVE_SUPPRESSOR

Note that aggressive echo cancellation can create a walkie-talkie, half-duplex effect.
This should be enabled only if all other methods of reducing echo have failed.

Enable echo cancellation for Zaptel interfaces in the zapata.conf file. The default con-
figuration enables echo cancellation with echocancel=yes. echocancelwhenbridged=yes
will enable echo cancellation for TDM bridged calls. While bridged calls should not
require echo cancellation, this may improve call quality.

When echo cancellation is enabled, the echo canceller learns of echo on the line by
listening for it for the duration of the call. Consequently, echo may be heard at the
beginning of a call and eventually lessen after period of time. To avoid this situation,
you can employ a method called “echo training,” which will mute the line briefly at
the beginning of a call, and then send a tone from which the amount of echo on the
line can be determined. This allows Asterisk to deal with the echo more quickly.
Echo training can be enabled with echotraining=yes.

Asterisk and VoIP
It should come as no surprise that Asterisk loves to talk VoIP. But in order to do so,
Asterisk needs to know which function it is to perform: that of client, server, or both.
One of the most complex and often confusing concepts in Asterisk is the naming
scheme of inbound and outbound authentication.

Users and Peers and Friends—Oh My!
Connections that authenticate to us, or that we authenticate, are defined in the iax.
conf and sip.conf files as users and peers. Connections that do both may be defined as
friends. When determining which way the authentication is occurring, it is always
important to view the direction of the channels from Asterisk’s viewpoint, as connec-
tions are being accepted and created by the Asterisk server.

,ch08.21908 Page 152 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Asterisk and VoIP | 153

Users

A connection defined as a user is any system/user/endpoint that we allow to connect
to us. Keep in mind that a user definition does not provide a method with which to call
that user—the user type is used simply to create a channel for incoming calls.* A user
definition will require a context name to be defined to indicate where the incoming
authenticated call will be placed in the dialplan (in extensions.conf).

Peers

A connection defined as a peer type is an outgoing connection. Think of it this way:
users place calls to us, while we place calls to our peers. Since peers do not place calls
to us, a peer definition does not typically require the configuration of a context
name. However, there is one exception: if calls that originate from your system are
returned to your system in a loopback, the incoming calls (which originate from a
SIP proxy, not a user agent) will be matched on the peer definition. The default con-
text should handle these incoming calls appropriately, although it’s preferable for
contexts to be defined for them on a per-peer basis.†

In order to know where to send a call to a host, we must know its location in rela-
tion to the Internet (that is, its IP address). The location of a peer may be defined
either statically or dynamically. A dynamic peer is configured with host=dynamic
under the peer definition heading. Because the IP address of a dynamic peer may
change constantly, it must register with the Asterisk box to let it know what its IP
address is, so calls can successfully be routed to it. If the remote end is another Aster-
isk box, the use of a register statement is required, as discussed below.

Friends

Defining a type as a friend is a shortcut for defining it as both a user and a peer.
However, connections that are both a user and a peer aren’t always defined this way,
because defining each direction of call creation individually (using both a user and a
peer definition) allows more granularity and control over the individual connections.

Figure 8-1 shows the flow of authentication control in relation to Asterisk.

* In SIP, this is not always the case. If the endpoint is a SIP proxy service (as opposed to a user agent), Asterisk
will authenticate based on the peer definition, matching the IP address and port in the Contact field of the
SIP header against the hostname (and port, if specified) defined for the peer (if the port is not specified, the
one defined in the [general] section will be used). See the discussion of the SIP insecure option in Appendix
A for more on this subject.

† For more information on this topic, see the discussion of the SIP context option in Appendix A.

,ch08.21908 Page 153 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

154 | Chapter 8: Protocols for VoIP

register Statements
A register statement is a way of telling a remote peer where your Asterisk box is in
relation to the Internet. Asterisk uses register statements to authenticate to remote
providers when you are employing a dynamic IP address, or when the provider does
not have your IP address on record. There are situations when a register statement
is not required, but to demonstrate when a register statement is required, let’s look
at an example.

Say you have a remote peer that is providing DID services to you. When someone
calls the number +1-800-555-1212, the call goes over the physical PSTN network to
your service provider and into their Asterisk server, possibly over their T-1 connec-
tion. This call is then routed to your Asterisk server via the Internet.

Your service provider will have a definition in either their sip.conf or iax.conf configu-
ration file (depending on whether you are connecting with the SIP or IAX protocol,
respectively) for your Asterisk server. If you receive calls only from this provider, you
would define them as a user (if they were another Asterisk system, you might be
defined in their system as a peer).

Now let’s say that your box is on your home Internet connection, with a dynamic IP
address. Your service provider has a static IP address (or perhaps a fully qualified
domain name), which you place in your configuration file. Since you have a dynamic
address, your service provider specifies host=dynamic in its configuration file. In order
to know where to route your +1-800-555-1212 call, your service provider needs to
know where you are located in relation to the Internet. This is where the register
statement comes into use.

Figure 8-1. Call origination relationships of users, peers, and friends to Asterisk

Asterisk User

Asterisk Peer

Asterisk Friend

,ch08.21908 Page 154 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Conclusion | 155

The register statement is a way of authenticating and telling your peer where you
are. In the [general] section of your configuration file, you would place a statement
similar to this:

register => username:secret@my_remote_peer

You can verify a successful register with the use of the iax2 show registry and sip
show registry commands at the Asterisk console.

Conclusion
If you listen to the buzz in the telecom industry, you might think that VoIP is the
future of telephony. But to Asterisk, VoIP is more a case of “been there, done that.”
For Asterisk, the future of telephony is much more exciting. We’ll take a look at that
vision a bit later, in Chapter 11. In the next chapter, we are going to delve into one of
the more revolutionary and powerful concepts of Asterisk: AGI, the Asterisk Gate-
way Interface.

,ch08.21908 Page 155 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

156

Chapter 9CHAPTER 9

The Asterisk Gateway Interface (AGI)

Even he, to whom most things that most people
would think were pretty smart were pretty dumb,
thought it was pretty smart.
—Douglas Adams, The Salmon of Doubt

The Asterisk Gateway Interface, or AGI, provides a standard interface by which
external programs may control the Asterisk dialplan. Usually, AGI scripts are used to
do advanced logic, communicate with relational databases (such as PostgreSQL or
MySQL), and access other external resources. Turning over control of the dialplan to
an external AGI script enables Asterisk to easily perform tasks that would otherwise
be difficult or impossible.

This chapter covers the fundamentals of AGI communication. It will not teach you
how to be a programmer—rather, we’ll assume that you’re already a competent pro-
grammer, so that we can show you how to write AGI programs. If you don’t know
how to do computer programming, this chapter probably isn’t for you, and you
should skip ahead to the next chapter.

Over the course of this chapter, we’ll write a sample AGI program in each of the Perl,
PHP, and Python programming languages. Note, however, that because Asterisk pro-
vides a standard interface for AGI scripts, these scripts can be written in almost any
modern programming language. We’ve chosen to highlight Perl, PHP, and Python
because they’re the languages most commonly used for AGI programming.

Fundamentals of AGI Communication
Instead of releasing an API for programming, AGI scripts communicate with Aster-
isk over communications channels (file pointers, in programming parlance) known
as STDIN, STDOUT, and STDERR. Most computer programmers will recognize these chan-
nels, but just in case you’re not familiar with them we’ll cover them here.

,ch09.22228 Page 156 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Fundamentals of AGI Communication | 157

What Are STDIN, STDOUT, and STDERR?
STDIN, STDOUT, and STDERR are channels by which programs in Unix-like environ-
ments receive information from and send information to external programs. STDIN, or
“standard input,” is the information that is sent to the program, either from the key-
board or from another program. In our case, information coming from Asterisk itself
comes in on the program’s STDIN file handle. STDOUT, or “standard output,” is the file
handle that the AGI script uses to pass information back to Asterisk. Finally, the AGI
script can use the STDERR (“standard error”) file handle to write error messages to the
Asterisk console.

Let’s sum up these three communications concepts:

• An AGI script reads from STDIN to get information from Asterisk.

• An AGI script writes data to STDOUT to send information to Asterisk.

• An AGI script may write data to STDERR to send debug information to the
Asterisk console.

At this time, writing to STDERR from within your AGI script writes the
information only to the first Asterisk console—that is, the first Aster-
isk console started with the -c or -r parameters.

This is rather unfortunate, and will hopefully be remedied soon by the
Asterisk developers.

If you’re using the safe_asterisk program to start Asterisk (which you
probably are), it starts a remote console on TTY9. (Try pressing Ctrl-
Alt-F9, and see if you get an Asterisk command-line interface.) This
means that all the AGI debug information will print on only that remote
console. You may want to disable this console in safe_asterisk to allow
you to see the debug information in another console. (You may also
want to disable that console for security reasons, as you might not want
just anyone to be able to walk up to your Asterisk server and have access
to a console without any kind of authentication.)

The Standard Pattern of AGI Communication
The communication between Asterisk and an AGI script follows a predefined pat-
tern. Let’s enumerate the steps, and then we’ll walk through one of the sample AGI
scripts that come with Asterisk.

When an AGI script starts, Asterisk sends a list of variables and their values to the
AGI script. The variables might look something like this:

agi_request: test.py
agi_channel: Zap/1-1
agi_language: en
agi_callerid:
agi_context: default
agi_extension: 123
agi_priority: 2

,ch09.22228 Page 157 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

158 | Chapter 9: The Asterisk Gateway Interface (AGI)

After sending these variables, Asterisk sends a blank line. This is the signal that
Asterisk is done sending the variables and it is time for the AGI script to control the
dialplan.

At this point, the AGI script sends commands to Asterisk by writing to STDOUT. After
the script sends each command, Asterisk sends a response that the AGI script should
read. This action (sending commands to Asterisk and reading the responses) can
continue for the duration of the AGI script.

You may be asking yourself what commands you can use from within your AGI
script. Good question—we’ll cover the basic commands shortly.*

Calling an AGI Script from the Dialplan
In order to work properly, your AGI script must be executable. To use an AGI script
inside your dialplan, simply call the AGI() application, with the name of the AGI
script as the argument, like this:

exten => 123,1,Answer()
exten => 123,2,AGI(agi-test.agi)

AGI scripts often reside in the AGI directory (usually located in /var/lib/asterisk/agi-
bin), but you can specify the complete path to the AGI script.

In this chapter, we’ll first cover the sample agi-test.agi script that comes with Aster-
isk (which was written in Perl), then write a weather report AGI program in PHP,
and then finish up by writing an AGI program in Python to play a math game.

* To get a list of available AGI commands, type show agi at the Asterisk command-line interface. You can also
refer to Appendix C for an AGI command reference.

AGI(), EAGI(), DeadAGI(), and FastAGI()
In addition to the AGI() application, there are several other AGI applications suited to
different circumstances. While they won’t be covered in this chapter, they should be
quite simple to figure out once you understand the basics of AGI scripting.

The EAGI() (enhanced AGI) application acts just like AGI(), but allows your AGI script
to read the inbound audio stream on file descriptor number three.

The DeadAGI() application is also just like AGI(), but it works correctly on a channel
that is dead (i.e., a channel that has been hung up). As this implies, the regular AGI()
application doesn’t work on dead channels.

The FastAGI() application allows the AGI script to be called across the network, so
that multiple Asterisk servers can call AGI scripts from a central location.

,ch09.22228 Page 158 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Writing AGI Scripts in Perl | 159

Writing AGI Scripts in Perl
Asterisk comes with a sample AGI script called agi-test.agi. Let’s step through the file
while we cover the core concepts of AGI programming. While this particular script is
written in Perl, please remember that your own AGI programs may be written in
almost any programming language. Just to prove it, we’re going to cover AGI pro-
gramming in a couple of other languages later in the chapter.

Let’s get started! We’ll look at each section of the code in turn, and describe what it
does.

#!/usr/bin/perl

This line tells the system that this particular script is written in Perl, so it should use
the Perl interpreter to execute the script. If you’ve done much Linux or Unix script-
ing, this line should be familiar to you. This line assumes, of course, that your Perl
binary is located in the /usr/bin/ directory. Change this to match the location of your
Perl interpreter.

use strict;

use strict tells Perl to act, well, strict about possible programming errors, such as
undeclared variables. While not absolutely necessary, enabling this will help you
avoid common programming pitfalls.

$|=1;

This line tells Perl not to buffer its output—in other words, that it should write any
data immediately, instead of waiting for a block of data before outputting it. You’ll
see this as a recurrent theme throughout the chapter.

You should always use unbuffered output when writing AGI scripts.
Otherwise, your AGI may not work as expected, because Asterisk may
be waiting for the output of your program, while your program thinks
it has sent the output to Asterisk and is waiting for a response.

Set up some variables
my %AGI; my $tests = 0; my $fail = 0; my $pass = 0;

Here, we set up four variables. The first is a hash called AGI, which is used to store
the variables that Asterisk passes to our script at the beginning of the AGI session.
The next three are scalar values, used to count the total number of tests, the number
of failed tests, and the number of passed tests, respectively.

while(<STDIN>) {
 chomp;
 last unless length($_);
 if (/^agi_(\w+)\:\s+(.*)$/) {
 $AGI{$1} = $2;
 }
}

,ch09.22228 Page 159 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

160 | Chapter 9: The Asterisk Gateway Interface (AGI)

As we explained earlier, Asterisk sends a group of variables to the AGI program at
startup. This loop simply takes all of these variables and stores them in the hash
named AGI. They can be used later in the program or simply ignored, but they should
always be read from STDIN before continuing on with the logic of the program.

print STDERR "AGI Environment Dump:\n";
foreach my $i (sort keys %AGI) {
 print STDERR " -- $i = $AGI{$i}\n";
}

This loop simply writes each of the values that we stored in the AGI hash to STDERR. This
is useful for debugging the AGI script, as STDERR is printed to the Asterisk console.*

sub checkresult {
 my ($res) = @_;
 my $retval;
 $tests++;
 chomp $res;
 if ($res =~ /^200/) {
 $res =~ /result=(-?\d+)/;
 if (!length($1)) {
 print STDERR "FAIL ($res)\n";
 $fail++;
 } else {
 print STDERR "PASS ($1)\n";
 $pass++;
 }
 } else {
 print STDERR "FAIL (unexpected result '$res')\n";
 $fail++;
 }

This subroutine reads in the result of an AGI command from Asterisk and decodes
the result to determine whether the command passes or fails.

Now that the preliminaries are out of the way, we can get to the core logic of the AGI
script.

print STDERR "1. Testing 'sendfile'...";
print "STREAM FILE beep \"\"\n";
my $result = <STDIN>;
&checkresult($result);

This first test shows how to use the STREAM FILE command. The STREAM FILE com-
mand tells Asterisk to play a sound file to the caller, just as the Background() applica-
tion does. In this case, we’re telling Asterisk to play a file called beep.gsm.†

* Actually, to the first spawned Asterisk console (i.e., the first instance of Asterisk called with the –c or –r
option). If safe_asterisk was used to start Asterisk, the first Asterisk console will be on TTY9, which means
that you will not be able to view AGI errors remotely.

† Asterisk automatically selects the best format, based on translation cost and availability, so the file extension
is never used in the function.

,ch09.22228 Page 160 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Writing AGI Scripts in Perl | 161

You will notice that the second argument is passed by putting in a set of double
quotes, escaped by backslashes. Without the double quotes to indicate the second
argument, this command does not work correctly.

You must pass all required arguments to the AGI commands. If you
want to skip a required argument, you must send empty quotes (prop-
erly escaped in your particular programming language), as shown
above. If you don’t pass the required number of arguments, your AGI
script will not work.

You should also make sure you pass a line feed (the \n on the end of
the print statement) at the end of the command.

After sending the STREAM FILE command, this test reads the result from STDIN and
calls the checkresult subroutine to determine if Asterisk was able to play the file.
The STREAM FILE command takes three arguments, two of which are required:

• The name of the sound file to play back

• The digits that may interrupt the playback

• The position at which to start playing the sound, specified in number of samples
(optional)

In short, this test told Asterisk to play back the file named beep.gsm, and then
checked the result to make sure the command was successfully executed by Asterisk.

print STDERR "2. Testing 'sendtext'...";
print "SEND TEXT \"hello world\"\n";
my $result = <STDIN>;
&checkresult($result);

This test shows us how to call the SEND TEXT command, which is similar to the
SendText() application. This command will send the specified text to the caller, if
the caller’s channel type supports the sending of text.

The SEND TEXT command takes one argument: the text to send to the channel. If the
text contains spaces (as in the example above), the argument should be encapsu-
lated with quotes, so that Asterisk will know that the entire text string is a single
argument to the command. Again, notice that the quotation marks are escaped, as
they must be sent to Asterisk, not used to terminate the string in Perl.

print STDERR "3. Testing 'sendimage'...";
print "SEND IMAGE asterisk-image\n";
my $result = <STDIN>;
&checkresult($result);

This test calls the SEND IMAGE command, which is similar to the SendImage() applica-
tion. Its single argument is the name of an image file to send to the caller. As with the
SEND TEXT command, this command works only if the calling channel supports the
reception of images.

,ch09.22228 Page 161 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

162 | Chapter 9: The Asterisk Gateway Interface (AGI)

print STDERR "4. Testing 'saynumber'...";
print "SAY NUMBER 192837465 \"\"\n";
my $result = <STDIN>;
&checkresult($result);

This test sends Asterisk the SAY NUMBER command. This command behaves identi-
cally to the SayNumber() dialplan application. It takes two arguments:

• The number to say

• The digits that may interrupt the command

Again, since we’re not passing in any digits as the second argument, we need to pass
in an empty set of quotes.

print STDERR "5. Testing 'waitdtmf'...";
print "WAIT FOR DIGIT 1000\n";
my $result = <STDIN>;
&checkresult($result);

This test shows the WAIT FOR DIGIT command. This command waits the specified
number of milliseconds for the caller to enter a DTMF digit. If you want the com-
mand to wait indefinitely for a digit, use -1 as the timeout. This application returns
the decimal ASCII value of the digit that was pressed.

print STDERR "6. Testing 'record'...";
print "RECORD FILE testagi gsm 1234 3000\n";
my $result = <STDIN>;
&checkresult($result);

This section of code shows us the RECORD FILE command. This command is used to
record the call audio, similar to the Record() dialplan application. RECORD FILE takes
seven arguments, the last three of which are optional:

• The filename of the recorded file.

• The format in which to record the audio.

• The digits that may interrupt the recording.

• The timeout (maximum recording time) in milliseconds, or -1 for no timeout.

• The number of samples to skip before starting the recording (optional).

• The word BEEP, if you’d like Asterisk to beep before the recording starts (optional).

• The number of seconds before Asterisk decides that the user is done with the
recording and returns, even though the timeout hasn’t been reached and no
DTMF digits have been entered (optional). This argument must be preceded by s=.

In this particular case, we’re recording a file called testagi (in the GSM format), with
any of the DTMF digits 1 through 4 terminating the recording, and a maximum
recording time of 3,000 milliseconds.

print STDERR "6a. Testing 'record' playback...";
print "STREAM FILE testagi \"\"\n";
my $result = <STDIN>;
&checkresult($result);

,ch09.22228 Page 162 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Creating AGI Scripts in PHP | 163

The second part of this test plays back the audio that was recorded earlier, using the
STREAM FILE command. We’ve already covered STREAM FILE, so this section of code
needs no further explanation.

print STDERR "================== Complete ======================\n";
print STDERR "$tests tests completed, $pass passed, $fail failed\n";
print STDERR "==\n";

At the end of the AGI script, a summary of the tests is printed to STDERR, which
should end up on the Asterisk console.

In summary, you should remember the following when writing AGI programs in Perl:

• Turn on strict language checking with the use strict command.*

• Turn off output buffering by setting $|=1.

• Data from Asterisk is received using a while(<STDIN>) loop.

• Write values with the print command.

• Use the print STDERR command to write debug information to the Asterisk
console.

The Perl AGI Library
If you are interesting in building your own AGI scripts in Perl, you may want to
check out the Asterisk::AGI Perl module written by James Golovich, which is located
at http://asterisk.gnuinter.net. The Asterisk::AGI module makes it even easier to write
AGI scripts in Perl.

Creating AGI Scripts in PHP
We promised we’d cover several languages, so let’s go ahead and see what an AGI
script in PHP looks like. The fundamentals of AGI programming still apply; only the
programming language has changed. In this example, we’ll write an AGI script to
download a weather report from the Internet and deliver the temperature, wind
direction, and wind speed back to the caller.

#!/usr/bin/php -q
<?php

The first line tells the system to use the PHP interpreter to run this script. The –q
option turns off HTML error messages. You should ensure that there aren’t any extra
lines between the first line and the opening PHP tag, as they’ll confuse Asterisk.

change this to match the code of your particular city
for a complete list of US cities, go to
http://www.nws.noaa.gov/data/current_obs/
$weatherURL="http://www.nws.noaa.gov/data/current_obs/KMDQ.xml";

* This advice probably applies to any Perl program you might write, especially if you’re new to Perl.

,ch09.22228 Page 163 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

164 | Chapter 9: The Asterisk Gateway Interface (AGI)

This tells our AGI script where to go to get the current weather conditions. In this
example, we’re getting the weather for Huntsville, Alabama. Feel free to visit the web
site listed above for a complete list of stations throughout the United States of America.*

don't let this script run for more than 60 seconds
set_time_limit(60);

Here, we tell PHP not to let this program run for more than 60 seconds. This is a
safety net, which will end the script if for some reason it takes more than 60 seconds
to run.

turn off output buffering
ob_implicit_flush(false);

This command turns off output buffering, meaning that all data will be sent immedi-
ately to the AGI interface and will not be buffered.

turn off error reporting, as it will most likely interfere with
the AGI interface
error_reporting(0);

This command turns off all error reporting, as it can interfere with the AGI interface.
(You might find it helpful to comment out this line during testing.)

create file handles if needed
if (!defined('STDIN'))
{
 define('STDIN', fopen('php://stdin', 'r'));
}
if (!defined('STDOUT'))
{
 define('STDOUT', fopen('php://stdout', 'w'));
}
if (!defined('STDERR'))
{
 define('STDERR', fopen('php://stderr', 'w'));
}

This section of code ensures that we have open file handles for STDIN, STDOUT, and
STDERR, which will handle all communication between Asterisk and our script.

retrieve all AGI variables from Asterisk
while (!feof(STDIN))
{
 $temp = trim(fgets(STDIN,4096));
 if (($temp == "") || ($temp == "\n"))
 {
 break;
 }

* We apologize to our readers outside of the United States for using a weather service that only works for U.S.
cities. If you can find a good international weather service that provides its data in XML, it shouldn’t be too
hard to change this AGI script to work with that particular service. Once we find one, we’ll update this script
for future editions.

,ch09.22228 Page 164 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Creating AGI Scripts in PHP | 165

 $s = split(":",$temp);
 $name = str_replace("agi_","",$s[0]);
 $agi[$name] = trim($s[1]);
}

Next, we’ll read in all of the AGI variables passed to us by Asterisk. Using the fgets
command in PHP to read the data from STDIN, we’ll save each variable in the hash
called $agi. Remember that we could use these variables in the logic of our AGI
script, although we won’t in this example.

print all AGI variables for debugging purposes
foreach($agi as $key=>$value)
{
 fwrite(STDERR,"-- $key = $value\n");
 fflush(STDERR);
}

Here, we print the variables back out to STDERR for debugging purposes.

#retrieve this web page
$weatherPage=file_get_contents($weatherURL);

This line of code retrieves the XML file from the National Weather Service and puts
the contents into the variable called $weatherPage. This variable will be used later on
to extract out the pieces of the weather report that we want.

#grab temperature in Fahrenheit
if (preg_match("/<temp_f>([0-9]+)<\/temp_f>/i",$weatherPage,$matches))
{
 $currentTemp=$matches[1];
}

This section of code extracts the temperature (in Fahrenheit) from the weather
report, using the preg_match command. This command uses Perl-compatible regular
expressions* to extract out the needed data.

#grab wind direction
if (preg_match("/<wind_dir>North<\/wind_dir>/i",$weatherPage))
{
 $currentWindDirection='northerly';
}
elseif (preg_match("/<wind_dir>South<\/wind_dir>/i",$weatherPage))
{
 $currentWindDirection='southerly';
}
elseif (preg_match("/<wind_dir>East<\/wind_dir>/i",$weatherPage))
{
 $currentWindDirection='easterly';
}
elseif (preg_match("/<wind_dir>West<\/wind_dir>/i",$weatherPage))
{
 $currentWindDirection='westerly';

* The ultimate guide to regular expressions is O’Reilly’s Mastering Regular Expressions, by Jeffrey Friedl.

,ch09.22228 Page 165 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

166 | Chapter 9: The Asterisk Gateway Interface (AGI)

}
elseif (preg_match("/<wind_dir>Northwest<\/wind_dir>/i",$weatherPage))
{
 $currentWindDirection='northwesterly';
}
elseif (preg_match("/<wind_dir>Northeast<\/wind_dir>/i",$weatherPage))
{
 $currentWindDirection='northeasterly';
}
elseif (preg_match("/<wind_dir>Southwest<\/wind_dir>/i",$weatherPage))
{
 $currentWindDirection='southwesterly';
}
elseif (preg_match("/<wind_dir>Southeast<\/wind_dir>/i",$weatherPage))
{
 $currentWindDirection='southeasterly';
}

The wind direction is found through the use of preg_match (located in the wind_dir
tags) and is assigned to the variable $currentWindDirection.

#grab wind speed
if (preg_match("/<wind_mph>([0-9.]+)<\/wind_mph>/i",$weatherPage,$matches))
{
 $currentWindSpeed = $matches[1];
}

Finally, we’ll grab the current wind speed and assign it to the $currentWindSpeed
variable.

tell the caller the current conditions
if ($currentTemp)
{
 fwrite(STDOUT,"STREAM FILE temperature \"\"\n");
 fflush(STDOUT);
 $result = trim(fgets(STDIN,4096));
 checkresult($result);
 fwrite(STDOUT,"STREAM FILE is \"\"\n");
 fflush(STDOUT);
 $result = trim(fgets(STDIN,4096));
 checkresult($result);
 fwrite(STDOUT,"SAY NUMBER $currentTemp \"\"\n");
 fflush(STDOUT);
 $result = trim(fgets(STDIN,4096));
 checkresult($result);
 fwrite(STDOUT,"STREAM FILE degrees \"\"\n");
 fflush(STDOUT);
 $result = trim(fgets(STDIN,4096));
 checkresult($result);
 fwrite(STDOUT,"STREAM FILE fahrenheit \"\"\n");
 fflush(STDOUT);
 $result = trim(fgets(STDIN,4096));
 checkresult($result);
}

,ch09.22228 Page 166 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Creating AGI Scripts in PHP | 167

if ($currentWindDirection && $currentWindSpeed)
{
 fwrite(STDOUT,"STREAM FILE with \"\"\n");
 fflush(STDOUT);
 $result = trim(fgets(STDIN,4096));
 checkresult($result);
 fwrite(STDOUT,"STREAM FILE $currentWindDirection \"\"\n");
 fflush(STDOUT);
 $result = trim(fgets(STDIN,4096));
 checkresult($result);
 fwrite(STDOUT,"STREAM FILE wx/winds \"\"\n");
 fflush(STDOUT);
 $result = trim(fgets(STDIN,4096));
 checkresult($result);
 fwrite(STDOUT,"STREAM FILE at \"\"\n";)
 fflush(STDOUT);
 $result = trim(fgets(STDIN,4096));
 checkresult($result);
 fwrite(STDOUT,"SAY NUMBER $currentWindSpeed \"\"\n");
 fflush(STDOUT);
 $result = trim(fgets(STDIN,4096));
 checkresult($result);
 fwrite($STDOUT,"STREAM FILE miles-per-hour \"\"\n");
 fflush(STDOUT);
 $result = trim(fgets(STDIN,4096));
 checkresult($result);
}

Now that we’ve collected our data, we can send AGI commands to Asterisk (checking
the results as we go) that will deliver the current weather conditions to the caller. This
will be achieved through the use of the STREAM FILE and SAY NUMBER AGI commands.

We’ve said it before, and we’ll say it again: when calling AGI commands, you must
pass in all of the required arguments. In this case, both STREAM FILE and SAY NUMBER
commands require a second argument; we’ll pass empty quotes escaped by the back-
slash character.

You should also notice that we call the fflush command each time we write to
STDOUT. While this is arguably redundant, there’s no harm in ensuring that the AGI
command is not buffered and is sent immediately to Asterisk.

function checkresult($res)
{
 trim($res);
 if (preg_match('/^200/',$res))
 {
 if (! preg_match('/result=(-?\d+)/',$res,$matches))
 {
 fwrite(STDERR,"FAIL ($res)\n");
 fflush(STDERR);
 return 0;
 }
 else

,ch09.22228 Page 167 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

168 | Chapter 9: The Asterisk Gateway Interface (AGI)

 {
 fwrite(STDERR,"PASS (".$matches[1].")\n");
 fflush(STDERR);
 return $matches[1];
 }
 }
 else
 {
 fwrite(STDERR,"FAIL (unexpected result '$res')\n");
 fflush(STDERR);
 return -1;
 }
}

The checkresult function is identical in purpose to the checkresult subroutine we
saw in our Perl example. As its name suggests, it checks the result that Asterisk
returns whenever we call an AGI command.

?>

At the end of the file, we have our closing PHP tag. Don’t place any whitespace after
the closing PHP tag, as it can confuse the AGI interface.

We’ve now covered two different languages, in order to demonstrate the similarities
and differences of programming an AGI script in PHP as opposed to Perl. The fol-
lowing things should be remembered when writing an AGI script in PHP:

• Invoke PHP with the –q switch; it turns off HTML in error messages.

• Turn off the time limit, or set it to a reasonable value (newer versions of PHP
automatically disable the time limit when PHP is invoked from the command
line).

• Turn off output buffering with the ob_implicit_flush(false) command.

• Open file handles to STDIN, STDOUT, and STDERR (newer versions of PHP may have
one or more of these file handles already opened—see the code above for a slick
way of making this work across most versions of PHP).

• Read variables from STDIN using the fgets function.

• Use the fwrite function to write to STDOUT and STDERR.

• Always call the fflush function after writing to either STDOUT or STDERR.

The PHP AGI Library
For advanced AGI programming in PHP, you may want to check out the PHPAGI
project at http://phpagi.sourceforge.net. It was originally written by Matthew Asham
and is being developed by several other members of the Asterisk community.

,ch09.22228 Page 168 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Writing AGI Scripts in Python | 169

Writing AGI Scripts in Python
The AGI script we’ll be writing in Python, called “The Subtraction Game,” was
inspired by a Perl program written by Ed Guy and discussed by him at the 2004
AstriCon conference. Ed described his enthusiasm for the power and simplicity of
Asterisk when he found he could write a quick Perl script to help his young daughter
improve her math skills.

Since we’ve already written a Perl program using AGI, and Ed has already written the
math program in Perl, we figured we’d take a stab at it in Python!

Let’s go through our Python script.

#!/usr/bin/python

This line tells the system to run this script in the Python interpreter. For small
scripts, you may consider adding the –u option to this line, which will run Python in
unbuffered mode. This is not recommended, however, for larger or frequently used
AGI scripts, as it can affect system performance.

import sys
import re
import time
import random

Here, we import several libraries that we’ll be using in our AGI script.

Read and ignore AGI environment (read until blank line)

env = {}
tests = 0;

while 1:
 line = sys.stdin.readline().strip()

 if line == '':
 break
 key,data = line.split(':')
 if key[:4] <> 'agi_':
 #skip input that doesn't begin with agi_
 sys.stderr.write("Did not work!\n");
 sys.stderr.flush()
 continue
 key = key.strip()
 data = data.strip()
 if key <> '':
 env[key] = data

sys.stderr.write("AGI Environment Dump:\n");
sys.stderr.flush()
for key in env.keys():
 sys.stderr.write(" -- %s = %s\n" % (key, env[key]))
 sys.stderr.flush()

,ch09.22228 Page 169 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

170 | Chapter 9: The Asterisk Gateway Interface (AGI)

This section of code reads in the variables that are passed to our script from Aster-
isk, and saves them into a dictionary named env. These values are then written to
STDERR for debugging purposes.

def checkresult (params):
 params = params.rstrip()
 if re.search('^200',params):
 result = re.search('result=(\d+)',params)
 if (not result):
 sys.stderr.write("FAIL ('%s')\n" % params)
 sys.stderr.flush()
 return -1
 else:
 result = result.group(1)
 #debug("Result:%s Params:%s" % (result, params))
 sys.stderr.write("PASS (%s)\n" % result)
 sys.stderr.flush()
 return result
 else:
 sys.stderr.write("FAIL (unexpected result '%s')\n" % params)
 sys.stderr.flush()
 return -2

The checkresult function is almost identical in purpose to the checkresult subrou-
tine in the sample Perl AGI script we covered earlier in the chapter. It reads in the
result of an Asterisk command, parses the answer, and reports whether or not the
command was successful.

def sayit (params):
 sys.stderr.write("STREAM FILE %s \"\"\n" % str(params))
 sys.stderr.flush()
 sys.stdout.write("STREAM FILE %s \"\"\n" % str(params))
 sys.stdout.flush()
 result = sys.stdin.readline().strip()
 checkresult(result)

The sayit function is a simple wrapper around the STREAM FILE command.

def saynumber (params):
 sys.stderr.write("SAY NUMBER %s \"\"\n" % params)
 sys.stderr.flush()
 sys.stdout.write("SAY NUMBER %s \"\"\n" % params)
 sys.stdout.flush()
 result = sys.stdin.readline().strip()
 checkresult(result)

The saynumber function is a simple wrapper around the SAY NUMBER command.

def getnumber (prompt, timelimit, digcount):
 sys.stderr.write("GET DATA %s %d %d\n" % (prompt, timelimit, digcount))
 sys.stderr.flush()
 sys.stdout.write("GET DATA %s %d %d\n" % (prompt, timelimit, digcount))
 sys.stdout.flush()
 result = sys.stdin.readline().strip()
 result = checkresult(result)

,ch09.22228 Page 170 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Writing AGI Scripts in Python | 171

 sys.stderr.write("digits are %s\n" % result)
 sys.stderr.flush()
 if result:
 return result
 else:
 result = -1

The getnumber function calls the GET DATA command to get DTMF input from the
caller. It is used in our program to get the caller’s answers to the subtraction problems.

limit=20
digitcount=2
score=0
count=0
ttanswer=5000

Here, we initialize a few variables that we’ll be using in our program.

starttime = time.time()
t = time.time() - starttime

In these lines we set the starttime variable to the current time and initialize t to zero.
We’ll use the t variable to keep track of the number of seconds that have elapsed
since the AGI script was started.

sayit("subtraction-game-welcome")

Next, we welcome the caller to the subtraction game.

while (t < 180):

 big = random.randint(0,limit+1)
 big += 10
 subt= random.randint(0,big)
 ans = big - subt
 count += 1

 #give problem:
 sayit("subtraction-game-next");
 saynumber(big);
 sayit("minus");
 saynumber(subt);
 res = getnumber("equals",ttanswer,digitcount);

 if (int(res) == ans) :
 score+=1
 sayit("subtraction-game-good");
 else :
 sayit("subtraction-game-wrong");
 saynumber(ans);

 t = time.time() - starttime

This is the heart of the AGI script. We loop through this section of code and give
subtraction problems to the caller until 180 seconds have elapsed. Near the top of

,ch09.22228 Page 171 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

172 | Chapter 9: The Asterisk Gateway Interface (AGI)

the loop, we calculate two random numbers and their difference. We then present
the problem to the caller, and read in the caller’s response. If the caller answers
incorrectly, we give the correct answer.

pct = float(score)/float(count)*100;
sys.stderr.write("Percentage correct is %d\n" % pct)
sys.stderr.flush()

sayit("subtraction-game-timesup")
saynumber(score)
sayit("subtraction-game-right")
saynumber(count)
sayit("subtraction-game-pct")
saynumber(pct)

After the users are done answering the subtraction problems, they are given their
scores.

As you have seen, the basics you should remember when writing AGI scripts in
Python are:

• Flush the output buffer after every write. This will ensure that your AGI pro-
gram won’t hang while Asterisk is waiting for the buffer to fill and Python is
waiting for the response from Asterisk.

• Read data from Asterisk with the sys.stdin.readline command.

• Write commands to Asterisk with the sys.stdout.write command. Don’t forget
to call sys.stdout.flush after writing.

The Python AGI Library
If you are planning on writing lot of Python AGI code, you may want to check out
Karl Putland’s Python module, Pyst. You can find it at http://www.sourceforge.net/
projects/pyst/.

Debugging in AGI
Debugging AGI programs, as with any other type of program, can be frustrating.
Luckily, there are two advantages to debugging AGI scripts. First, since all the com-
munications between Asterisk and the AGI program happen over STDIN and STDOUT
(and, of course, STDERR), you should be able to run your AGI script directly from the
operating system. Second, Asterisk has a handy command for showing all the com-
munications between itself and the AGI script: agi debug.

,ch09.22228 Page 172 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Debugging in AGI | 173

Debugging from the Operating System
As mentioned above, you should be able to run your program directly from the oper-
ating system to see how it behaves. The secret here is to act just like Asterisk does,
providing your script with the following:

• A list of variables and their values, such as agi_test:1.

• A blank line feed (/n) to indicate that you’re done passing variables.

• Responses to each of the AGI commands from your AGI script. Usually, typing
200 response=1 is sufficient.

Trying your program directly from the operating system may help you to more easily
spot bugs in your program.

Using Asterisk’s agi debug Command
The Asterisk command-line interface has a very useful command for debugging AGI
scripts, which is called (appropriately enough) agi debug. If you type agi debug at an
Asterisk console and then run an AGI, you’ll see something like the following:

 -- Executing AGI("Zap/1-1", "temperature.php") in new stack
 -- Launched AGI Script /var/lib/asterisk/agi-bin/temperature.php
AGI Tx >> agi_request: temperature.php
AGI Tx >> agi_channel: Zap/1-1
AGI Tx >> agi_language: en
AGI Tx >> agi_type: Zap
AGI Tx >> agi_uniqueid: 1116732890.8
AGI Tx >> agi_callerid: 101
AGI Tx >> agi_calleridname: Tom Jones
AGI Tx >> agi_callingpres: 0
AGI Tx >> agi_callingani2: 0
AGI Tx >> agi_callington: 0
AGI Tx >> agi_callingtns: 0
AGI Tx >> agi_dnid: unknown
AGI Tx >> agi_rdnis: unknown
AGI Tx >> agi_context: incoming
AGI Tx >> agi_extension: 141
AGI Tx >> agi_priority: 2
AGI Tx >> agi_enhanced: 0.0
AGI Tx >> agi_accountcode:
AGI Tx >>
AGI Rx << STREAM FILE temperature ""
AGI Tx >> 200 result=0 endpos=6400
AGI Rx << STREAM FILE is ""
AGI Tx >> 200 result=0 endpos=5440
AGI Rx << SAY NUMBER 67 ""
 -- Playing 'digits/60' (language 'en')
 -- Playing 'digits/7' (language 'en')
AGI Tx >> 200 result=0
AGI Rx << STREAM FILE degrees ""

,ch09.22228 Page 173 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

174 | Chapter 9: The Asterisk Gateway Interface (AGI)

AGI Tx >> 200 result=0 endpos=6720
AGI Rx << STREAM FILE fahrenheit ""
AGI Tx >> 200 result=0 endpos=8000
 -- AGI Script temperature.php completed, returning 0

You’ll see three types of lines while your AGI script is running. The first type, pref-
aced with AGI TX >>, are the lines that Asterisk transmits to your program’s STDIN.
The second type, prefaced with AGI RX <<, are the commands your AGI program
writes back to Asterisk over STDOUT. The third type, prefaced by --, are the standard
Asterisk messages presented as it executes certain commands.

To disable AGI debugging after it has been started, simply type agi no debug at an
Asterisk console.

Using the agi debug command will enable you to see the communication between
Asterisk and your program, which can be very useful when debugging. Hopefully, these
two tips will greatly improve your ability to write and debug powerful AGI programs.

Conclusion
For a developer, AGI is one of the more revolutionary and compelling reasons to
choose Asterisk over a closed, proprietary PBX. Still, AGI is only part of the picture.
For those of us who are less developers and more systems integrators or power users,
Chapter 10 will explore the wealth of accoutrements that make Asterisk compelling
to so many people.

,ch09.22228 Page 174 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

175

Chapter 10 CHAPTER 10

Asterisk for the Über-Geek

The first ninety percent of the task takes ninety
percent of the time, and the last ten percent takes the

other ninety percent.
—The Ninety:Ten Rule

The toughest part of writing this book was not finding things to write about, but rather
deciding what we would not be able to write about. Now that we’ve covered the
basics, you are ready to be told the truth: we have not taught you anywhere near all
that there is to know about Asterisk. Well, okay, perhaps five percent, but likely less.

Now please understand, this is not because we didn’t want to give you our very best;
it’s merely because Asterisk is, well, limitless (or so we believe).

In this chapter, we want to give you a taste of some of the wonders Asterisk holds in
store for you. Pretty nearly every section in this chapter could become a book in itself
(and they will become books, if Asterisk succeeds in the way we think it is going to).

Festival
Festival is a popular open source text-to-speech engine. The basic premise of using
Festival with Asterisk is that your dialplan can pass a body of text to Festival, which
will then “speak” the text to the caller. Probably the most obvious use for Festival
would be to have it read your email to you when you are on the road.

Getting Festival Set Up and Ready for Asterisk
There are currently two ways to use Festival with Asterisk. The first (and easiest)
method—without having to patch and recompile Festival—is to add the following text
to Festival’s configuration file (festival.scm, usually located in /etc/ or /usr/share/festival/):

(define (tts_textasterisk string mode)
"(tts_textasterisk STRING MODE)

,ch10.22432 Page 175 Wednesday, August 31, 2005 4:59 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

176 | Chapter 10: Asterisk for the Über-Geek

Apply tts to STRING. This function is specifically designed for use in server mode so
a single function call may synthesize the string. This function name may be added to
the server safe functions."
(let ((wholeutt (utt.synth (eval (list 'Utterance 'Text string)))))
(utt.wave.resample wholeutt 8000)
(utt.wave.rescale wholeutt 5)
(utt.send.wave.client wholeutt)))

You may place this text anywhere in the file, as long as it is not between any other
parentheses.

The second (and more traditional) way is to compile Festival with an Asterisk-spe-
cific patch (located in the contrib/ directory of the Asterisk source).

Information on both of these methods is contained in the README.festival file,
located in the contrib/ directory of the Asterisk source.

For either method, you’ll need to modify the Festival access list in the festival.scm
file. Simply search for the word “localhost,” and replace it with the fully qualified
domain name of your server.

Both of these methods set up Festival to be able to correctly communicate with
Asterisk. After setting up Festival, you should start the Festival server. You can then
call the Festival() application from within your dialplan.

Configuring Asterisk for Festival
The Asterisk configuration file that deals with Festival is aptly called festival.conf.
Inside this file, you specify the hostname and port of your Festival server, as well
some settings for the caching of Festival speech. For most installations (if you’re
going to run Festival on your Asterisk server), the defaults will work just fine.

Starting the Festival Server
To start the Festival server for debugging purposes, simply run festival with the
--server argument, like this:

[root@asterisk ~]# festival --server

Once you’re sure that the Festival server is running and not rejecting your connec-
tions, you can start Festival by typing:

[root@asterisk ~]# festival_server 2>&1 >/dev/null &

Calling Festival from the Dialplan
Now that Festival is configured and the Festival server is started, let’s call it from
within a simple dialplan:

exten => 123,1,Answer()
exten => 123,2,Festival(Asterisk and Festival are working together)

,ch10.22432 Page 176 Wednesday, August 31, 2005 4:59 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Festival | 177

You should always call the Answer() application before calling
Festival(), to ensure that a channel is established.

As Asterisk connects to Festival, you should see output like this in the terminal
where you started the Festival server:

[root@asterisk ~]# festival --server
server Sun May 1 18:38:51 2005 : Festival server started on port 1314
client(1) Sun May 1 18:39:20 2005 : accepted from asterisk.localdomain
client(1) Sun May 1 18:39:21 2005 : disconnected

If you see output like the following, it means you didn’t add the host to the access
list in festival.scm:

[root@asterisk ~]# festival --server
server Sun May 1 18:30:52 2005 : Festival server started on port 1314
client(1) Sun May 1 18:32:32 2005 : rejected from asterisk.localdomain not in access
list

Yet Another Way to Use Festival with Asterisk
Some people in the Asterisk community have reported good success by passing text to
Festival’s text2wave utility and then having Asterisk play back the resulting .wav file.
For example, you might do something like this:

exten => 124,1,Answer()
exten => 124,2,System(echo "This is a test of Festival" | /usr/bin/text2wave
-scale 1.5 -F 8000 -o /tmp/festival.wav)
exten => 124,3,Playback(/tmp/festival)
exten => 124,4,System(rm /tmp/festival.wav)
exten => 124,5,Hangup()

This method also allows you to call other text-to-speech engines, such as the popular
speech engine from Cepstral.a For this example, we’ll assume that Cepstral is installed
in /usr/local/cepstral/:

exten => 125,1,Answer()
exten => 125,2,System(/usr/local/cepstral/bin/swift -o /tmp/swift.wav
"This is a test of Cepstral")
exten => 125,3,Playback(/tmp/swift)
exten => 125,4,System(rm /tmp/swift.wav)
exten => 125,5,Hangup()

a. Cepstral can be evaluated at http://www.cepstral.com. Cepstral is an inexpensive commercial deriv-
ative of Festival with very good-sounding voices.

,ch10.22432 Page 177 Wednesday, August 31, 2005 4:59 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

178 | Chapter 10: Asterisk for the Über-Geek

Call Detail Recording
Without even being told, Asterisk assumes that you want to store CDR information.
Quite a smart machine, yes?

By default, Asterisk will create a CSV* file and place it in the folder /var/log/asterisk/
cdr-csv/. To the naked eye, this file looks like a bit of a mess. If, however, you sepa-
rate each line according to the commas, you will find that each line contains infor-
mation about a particular call, and that the commas separate the following values:

accountcode
Assigned if the application SetAccount() is used, or if configured for the channel
in the channel configuration file (i.e., sip.conf). The account code is assigned on
a per-channel basis.

src
Received Caller*ID (string, 80 characters).

dst
Destination extension.

dcontext
Destination context.

clid
Caller*ID with text (80 characters).

channel
Channel used (80 characters).

dstchannel
Destination channel, if appropriate (80 characters).

lastapp
Last application, if appropriate (80 characters).

lastdata
Last application data (arguments, 80 characters).

start
Start of call (date/time).

answer
Answer of call (date/time).

end
End of call (date/time).

* A Comma Separated Values (CSV) file is a common method of formatting database-type information in a
text file. You can open CSV files with a text editor, but most spreadsheet and database programs will also
read them and properly parse them into rows and columns.

,ch10.22432 Page 178 Wednesday, August 31, 2005 4:59 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Customizing System Prompts | 179

duration
Total time in system, in seconds (integer), from dial to hangup.

billsec
Total time call is up, in seconds (integer), from answer to hangup.

disposition
What happened to the call (ANSWERED, NO ANSWER, BUSY).

amaflags
What flags to use (DOCUMENTATION, BILL, IGNORE, etc.), specified on a per-channel
basis, like accountcode. AMA flags stand for Automated Message Accounting
flags, which are somewhat standard (supposedly) in the industry.

userfield
A user-defined field, maximum 255 characters.

CDR Challenges
While Asterisk will happily store information about any calls that pass through it, it
cannot store information it is not given. For example, if you have SIP devices that are
allowed to reinvite, once Asterisk has finished setting up the calls, the devices will no
longer need its assistance. Whether or not those devices subsequently report call
detail information back to it is something Asterisk is unable to control. If CDRs are
important, make sure your IP devices are not allowed to reinvite.*

Customizing System Prompts
In keeping with the seemingly limitless flexibility of Asterisk, you can also modify the
system prompts. This is very simple to explain, but generally difficult to do well.

Storing CDRs in a Database
CDRs can also be stored in a database. Asterisk currently supports SQLite, PostGreSQL,
MySQL, and unixODBC. The configuration details for these databases will not be cov-
ered in this book, but they are outlined in the Asterisk source code, under the doc/ sub-
directory. (For licensing reasons, cdr_mysql is in asterisk-addons.) Many people prefer
to store their CDRs in a database because this makes it easier to query them for specific
information, such as billing or toll fraud. We can use the CDR applications to manip-
ulate the current CDR from the dialplan (adding information to the custom field, for
example).

* Reinvites can be turned off in sip.conf with canreinvite=no. Similar functionality is controlled in iax.conf
with notransfer=yes.

,ch10.22432 Page 179 Wednesday, August 31, 2005 4:59 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

180 | Chapter 10: Asterisk for the Über-Geek

With over three hundred system prompts in the main distribution, and over six hun-
dred more in the asterisk-sounds add on, if you’re contemplating customizing all of
them you’d better have either a lot of money or a lot of time on your hands.

An audio engineer is also recommended, to ensure that the recordings are normal-
ized to –3 dB and that all prompts start and end at a zero-crossing point (with just
the right amount of silence prepended and appended).

Once you have the recordings, the actual implementation is easy—simply replace the
files in /var/lib/asterisk/sounds/ with the ones you have created.

Alternatively, you can opt to record your own prompts and place them in a folder of
your choosing. When you refer to sound files with the Playback() or Background()
applications, you can refer to the full pathname of the sound file, or to any subdirec-
tory of /var/lib/asterisk/sounds/.

A useful way to convert your WAV files to GSM format is with the use of the sox
application. To convert your files with sox, use:

sox foo.wav -r 8000 foo.gsm resample –ql

If your WAV files are recorded in stereo, be sure to add the –c1 flag to write the files
in mono. These recordings are often made through a PC, but check out the follow-
ing sidebar—some people have had better luck recording from the dialplan.

Manager
Asterisk Manager provides an API that allows external programs the ability to cre-
ate, monitor and manage Asterisk.* The Manager interface is a powerful mechanism
for integrating external programs of all kinds into Asterisk.

To use the Manager, you must define an account in the file /etc/asterisk/manager.conf.
This file will look something like this:

[general]
enabled = yes

The Voice
If you are interested in The Voice of Asterisk, she is Allison Smith, and she can deliver
customized recordings for you to use on your own system.

This is an extremely cool concept, as very few PBXs allow you to use the same voice in
your custom recordings as is used by the system prompts.

To make use of Allison’s talents, sign up at http://thevoice.digium.com.

* An Application Program Interface (API) is a mechanism by which a program allows other programs to take
control of it. Contrast this with AGI, which allows external programs to be called from the dialplan.

,ch10.22432 Page 180 Wednesday, August 31, 2005 4:59 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Manager | 181

port = 5038
bindaddr = 0.0.0.0

[oreilly]
secret = notvery
;deny=0.0.0.0/0.0.0.0
;permit=209.16.236.73/255.255.255.0
read = system,call,log,verbose,command,agent,user
write = system,call,log,verbose,command,agent,user

In the [general] section, you have to enable the service by setting the parameter
enabled = yes. The TCP port to use will default to 5038.

For each user, you will specify the username in square brackets ([]), followed by the
password for that user (secret), any IP addresses you wish to deny access to, any IP
addresses you wish to permit access to, and the read and write permissions for that user.

Manager Commands
It is important to keep in mind that the Manager interface is designed to be used by
programs, not fingers. That’s not to say that you can’t issue commands to it directly—
just don’t expect a typical console interface, because that’s not what Manager is for.

Sound Recording from the Dialplan
Surprisingly, one of the easiest ways to get respectable-quality recordings is not
through a PC with fancy editing software, but rather through a telephone set. There are
many reasons for this, but the most important is that the telephone will tend to filter
out background noise (such as white noise caused by HVAC equipment) and will
record at a consistent audio level.

This little addition to your dialplan will allow you to easily create recordings, which
will be placed in your system’s /tmp/ folder (from there, you can rename them and
move them wherever you’d like):

exten => _66XX,1,Wait(2)
exten => _66XX,2,Record(/tmp/prompt${EXTEN:2}:wav)
exten => _66XX,3,Wait(1)
exten => _66XX,4,Playback(/tmp/prompt${EXTEN:2})
exten => _66XX,5,Wait(2)
exten => _66XX,6,Hangup()

This little snippet will allow you to dial from 6600 to 6699, and it will record prompts in
the /tmp/ folder using the names prompt00.wav to prompt99.wav. After you complete
recording (by pressing the # key), it will play your prompt back to you and hang up.

Be sure to move your prompts out of the /tmp/ dir to the Asterisk sounds directory. To
keep the dialplan readable, rename your promptXX files to a meaningful names—e.g.,
mv /tmp/prompt00.wav /var/lib/asterisk/sounds/custom/welcome-message.wav.

,ch10.22432 Page 181 Wednesday, August 31, 2005 4:59 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

182 | Chapter 10: Asterisk for the Über-Geek

Commands to Manager are delivered in packages with the following syntax (lines are
terminated with CRLF):

Action: <action type>
<Key 1>: <Value 1>
<Key 2>: <Value 2>
etc ...
<Variable>: <Value>
<Variable>: <Value>
etc...

For example, to authenticate with Manager (which is required if you expect to have
any interaction whatsoever), you would send the following:

Action: login
Username: oreilly
Secret: notvery
<CRLF>

An extra CRLF on a blank line will send the entire package to Manager.

Once authenticated, you will be able to initiate actions, as well as see events gener-
ated by Asterisk. On a busy system, this can get quite complicated and become
totally impossible to keep track of with the unaided eye.

The Flash Operator Panel
The Flash Operator Panel (FOP) is far and away the most popular example of the
power of the Manager interface. FOP creates a web-based visual view of your system
and allows you control of calls.

FOP is most commonly used to enable a live attendant to view the users in the sys-
tem and connect calls between them. It can also be used in a call-center environment
to provide CRM-triggered screen pops.*

The FOP management interface is shown in Figure 10-1. To grab a copy of FOP,
head to http://www.asternic.org.

Call Files
Call files allow you to create calls through the Linux shell. These powerful events are
triggered by depositing a .call file in the directory /var/spool/asterisk/outgoing/. The
actual name of the file does not matter, but it’s good form to give the file a meaning-
ful name and to end the filename with .call.

* Customer Relationship Management (CRM) is an interface companies use to help manage customer infor-
mation and interaction.

,ch10.22432 Page 182 Wednesday, August 31, 2005 4:59 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Call Files | 183

When a call file appears in the outgoing folder, Asterisk will almost immediately* act
on the instructions contained therein.

Call files are formatted in the following manner. First, we define where we want to call:
Channel: <channel>

We can control how long to wait for a call to be answered (the default is 45 sec-
onds), how long to wait between call retries, and the maximum number of retries. If
MaxRetries is omitted, the call will be attempted only once:

WaitTime: <number>
RetryTime: <number>
MaxRetries: <number>

If the call is answered, we specify where to connect it here:
Context: <context-name>
Extension: <ext>
Priority: <priority>

Alternatively, we can specify a single application and pass arguments to it:
Application: Playback()
Data: hello-world

Next, we set the Caller*ID of the outgoing call:
CallerID: Asterisk <800-555-1212>

Then we set channel variables, as follows:
SetVar: john=Zap/1/5551212
SetVar: sally=SIP/1000

Figure 10-1. The Flash Operator Panel management interface

* We’re talking seconds or less.

,ch10.22432 Page 183 Wednesday, August 31, 2005 4:59 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

184 | Chapter 10: Asterisk for the Über-Geek

and add a CDR account code:

Account: documentation

When you create a call file, do not do so from the spool directory.
Asterisk monitors the spool aggressively and will try to grab your file
before you’ve even finished writing it. Create call files in some other
folder, and then mv them into the spool directory.

DUNDi
If there were any concerns that Mark Spencer was in danger of running out of good
ideas, Distributed Universal Number Discovery (DUNDi) ought to lay such thoughts
to rest. DUNDi is poised to be as revolutionary as Asterisk. The DUNDi web site
(http://www.dundi.com) says it best: “DUNDi™ is a peer to peer system for locating
Internet gateways to telephony services. Unlike traditional centralized services (such
as the remarkably simple and concise ENUM* standard), DUNDi is fully distributed
with no centralized authority whatsoever.”

How Does DUNDi Work?
Think of DUNDi as a large phone book that allows you to ask peers if they know of
an alternative VoIP route to an extension number or PSTN telephone number.

For example, assume you are connected to the DUNDi-test network (a free and open
network that terminates calls to traditional PSTN numbers). You ask your friend Bob if
he knows how to reach 1-800-555-1212, a number for which you have no direct access.
Bob replies, “I don’t know how to reach that number, but let me ask my peer Sally.”

Bob asks Sally if she knows how to reach the requested number, and she responds
with, “You can reach that number at IAX2/dundi:very_long_password@hostname/
extension.” Bob then stores the address in his database and passes on to you the
information about how to reach 1-800-555-1212 via VoIP, allowing you an alterna-
tive method of reaching the same destination through a different network.

Because Bob has stored the information he found, he’ll be able to provide it to any
peers who later request the same number from him, so the lookup won’t have to go
any further. This helps reduce the load on the network and increases response times
for numbers that are looked up often. (However, it should be noted that DUNDi cre-
ates a rotating key, and thus stored information is valid for a limited period of time.)

DUNDi performs lookups dynamically, either with a switch => statement in your
extensions.conf file or with the use of the DUNDiLookup() application. DUNDi is avail-
able only in Asterisk Version 1.2 or higher.

* http://www.faqs.org/rfc/rfc2916.txt.

,ch10.22432 Page 184 Wednesday, August 31, 2005 4:59 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

DUNDi | 185

You can use the DUNDi protocol in a private network as well. Say you’re the Aster-
isk administrator of a very large enterprise installation and you wish to simplify the
administration of extension numbers. You could use DUNDi in this situation, allow-
ing multiple Asterisk boxes (presumably located at each of the company’s locations
and peered with one another) to perform dynamic lookups for the VoIP addresses of
extensions on the network.

Configuring Asterisk for Use with DUNDi
There are three files that need to be configured for DUNDi: dundi.conf, extensions.conf,
and iax.conf.* The dundi.conf file controls the authentication of peers who we allow to
perform lookups through our system. This file also manages the list of peers to whom
we might submit our own lookup requests. Since it is possible to run several different
networks on the same box, it is necessary to define a different section for each peer,
and then configure the networks in which that peer is allowed to perform lookups.
Additionally, we need to define which peers we wish to use to perform lookups.

The General Peering Agreement

The General Peering Agreement (GPA) is a legally binding license agreement that is
designed to prevent abuse of the DUNDi protocol. Before connecting to the DUNDi-
test group, you are required to sign a GPA. The GPA is used to protect the members
of the group and to create a “trust” between the members. It is a requirement of the
DUNDi-test group that your complete and accurate contact information be config-
ured in dundi.conf, so that members of your peer group can contact you. The GPA
can be found in the doc/ subdirectory of the Asterisk source.

General configuration
The [general] section of dundi.conf contains parameters relating to the overall opera-
tion of the DUNDi client and server:

; DUNDi configuration file
;
[general]
;
department=IT
organization= toronto.example.com
locality=Toronto
stateprov=ON
country=CA
email=support@toronto.example.com
phone=+19055551212
;

* The dundi.conf and extensions.conf files must be configured. We have chosen to configure iax.conf for our
address advertisement on the network, but DUNDi is protocol-agnostic—thus sip.conf, h323.conf, or mgcp.
conf could be used instead.

,ch10.22432 Page 185 Wednesday, August 31, 2005 4:59 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

186 | Chapter 10: Asterisk for the Über-Geek

; Specify bind address and port number. Default is 4520
;bindaddr=0.0.0.0
port=4520
entityid=FF:FF:FF:FF:FF:FF
ttl=32
autokill=yes
;secretpath=dundi

The entity identifier defined by entityid should generally be the Media Access Con-
trol (MAC) address of an interface in the machine. The entity ID defaults to the first
Ethernet address of the server, but you can override this with entityid, as long as it
is set to the MAC address of something you own. The MAC address of the primary
external interface is recommended. This is the address that other peers will use to
identify you.

The Time To Live (ttl) field defines how many peers away we wish to receive replies
from and is used to break loops. Each time a request is passed on down the line
because the requested number is not known, the value in the TTL field is decreased
by one, much like the TTL field of an ICMP packet. The TTL field also defines the
maximum number of seconds we are willing to wait for a reply.

When you request a number lookup, an initial query (called a DPDISCOVER) is sent to
your peers requesting that number. If you do not receive an acknowledgment (ACK) of
your query (DPDISCOVER) within 2,000 ms (enough time for a single transmission
only), and autokill is equal to yes, Asterisk will send a CANCEL to the peers. (Note
that an acknowledgment is not necessarily a reply to the query; it is just an acknowl-
edgment that the peer has received the request.) The purpose of autokill is to keep
the lookup from stalling due to hosts with high latency. In addition to the yes and no
options, you may also specify the number of milliseconds to wait.

The pbx_dundi module creates a rotating key and stores it in the local Asterisk data-
base (AstDB). The key name secret is stored in the dundi family. The value of the key
can be viewed with the database show command at the Asterisk console. The data-
base family can be overridden with the secretpath option.

Creating mapping contexts

The dundi.conf file defines DUNDi contexts that are mapped to dialplan contexts in
your extensions.conf file. DUNDi contexts are a way of defining distinct and separate
directory service groups. The contexts in the mapping section point to contexts in
the extensions.conf file, which control the numbers that you advertise. When you cre-
ate a peer, you need to define which mapping contexts you will allow this peer to
search. You do this with the permit statement (each peer may contain multiple
permit statements). Mapping contexts are related to dialplan contexts in the sense
that they are a security boundary for your peers.

 Phone numbers must be advertised in the following format:

<country_code><area_code><prefix><number>

,ch10.22432 Page 186 Wednesday, August 31, 2005 4:59 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

DUNDi | 187

For example, a complete North American number could be advertised as
14165551212.

All DUNDi mapping contexts take the form of:

dundi_context => local_context,weight,technology,destination[,options]]

The following configuration creates a DUNDi mapping context that we will use to
advertise our local phone numbers to the DUNDi-test group. Note that this should
all appear on one line:

dundi-test => dundi-local,0,IAX2,dundi:${SECRET}@toronto.example.com/${NUMBER},
nounsolicited,nocomunsolicit,nopartial

In this example, the mapping context is dundi-test, which points to the dundi-local
context within extensions.conf (providing a listing of phone numbers to reply to).
Numbers that resolve to the PBX should be advertised with a weight of zero (directly
connected). Numbers higher than 0 indicate an increased number of hops or paths to
reach the final destination. This is useful when multiple replies for the same lookup
are received at the end that initially requested the number—a weight with a lower
number will be the preferred path.

If we can reply to a lookup, our response will contain the method by which the other
end can connect to the system. This includes the technology to use (such as IAX2,
SIP, H323, and so on), the username and password with which to authenticate,
which host to send the authentication to, and finally the extension number.

Asterisk provides some shortcuts to allow us to create a “template” with which we
can build our responses. The following channel variables can be used to construct
the template:

${SECRET}
Replaced with the password stored in the local AstDB

${NUMBER}
The number being requested

${IPADDR}
The IP address to connect to

It is generally safest to statically configure the hostname, rather than
making use of the ${IPADDR} variable. The ${IPADDR} variable will
sometimes reply with an address in the private IP space, which is
unreachable from the Internet.

Defining DUNDi peers

DUNDi peers are defined in the dundi.conf file. Peers are identified by the unique
layer-two MAC address of an interface on the remote system. The dundi.conf file is
where we define what context to search for peers requesting a lookup and which
peers we want to use when doing a lookup for a particular network.

,ch10.22432 Page 187 Wednesday, August 31, 2005 4:59 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

188 | Chapter 10: Asterisk for the Über-Geek

[00:00:00:00:00:00] ; Remote Office
model = symmetric
host = montreal.example.com
inkey = montreal
outkey = toronto
include = dundi-test
permit = dundi-test
qualify = yes
dynamic=yes

The remote peer’s identifier (MAC address) is enclosed in square brackets ([]). The
inkey and outkey are the public/private key pairs that we use for authentication. Key
pairs are generated with the astgenkey script, located in the ./asterisk/contrib/scripts/
source directory. Be sure to use the –n flag so that you don’t have to initialize pass-
words every time you start Asterisk:

cd /var/lib/asterisk/keys
/usr/src/asterisk/contrib/scripts/astgenkey –n toronto

The resulting keys, toronto.pub and toronto.key, will be placed in your /var/lib/aster-
isk/keys/ directory. The toronto.pub file is the public key, which you should post to a
web server so that it is easily accessible for anyone with whom you wish to peer.
When you peer, you can give your peers the HTTP-accessible public key, which they
can then place in their /var/lib/asterisk/keys/ directories.

After you have downloaded the keys, you must reload the res_crypto.so and pbx_
dundi.so modules in Asterisk:

*CLI> reload res_crypto.so
 -- Reloading module 'res_crypto.so' (Cryptographic Digital Signatures)
 -- Loaded PRIVATE key 'toronto'
 -- Loaded PUBLIC key 'toronto'

*CLI> reload pbx_dundi.so
 -- Reloading module 'pbx_dundi.so' (Distributed Universal Number Discovery
(DUNDi))
 == Parsing '/etc/asterisk/dundi.conf': Found

Then, create the dundi user in the iax.conf file to allow connections into your Aster-
isk system. When a call is authenticated, the extension number being requested is
passed to the dundi-local context in the extensions.conf file, where the call is then
handled by Asterisk.

Allowing remote connections

Here is the user definition for the dundi user:

[dundi]
type=user
dbsecret=dundi/secret
context=dundi-local
disallow=all
allow=ulaw
allow=g726

,ch10.22432 Page 188 Wednesday, August 31, 2005 4:59 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Conclusion | 189

Instead of using a static password, Asterisk regenerates passwords every 3,600 seconds
(1 hour). The value is stored in /dundi/secret of the Asterisk database and advertised
using the ${SECRET} variable defined within the mapping context lines in dundi.conf.
You can see the current keys for all peers, including your local public and private keys,
by performing a show keys at the Asterisk CLI.

The context entry dundi-local is where authorized callers are sent in extensions.conf.
From there, we can manipulate the call just as we would in the dialplan of any other
incoming connection.

Configuring the dialplan

The extensions.conf file handles what numbers you advertise and what you do with
the calls that connect to them. The dundi-local context performs double duty:

• It controls the numbers we advertise, referenced by the dundi mapping context
in dundi.conf.

• It controls what to do with the call, referenced by the dundi user in iax.conf.

You have the power of dialplan pattern matching to advertise ranges of numbers and
to control the incoming calls. In the following dialplan, we are only advertising the
number +1-416-555-1212, but pattern matching could just as easily have been
employed to advertise a range of numbers or extensions:

[dundi-local]
exten => 14165551212,1,NoOp(dundi-local: Number advertisement and incoming)
exten => 14165551212,n,Answer()
exten => 14165551212,n(call),Dial(SIP/1000)
exten => 14165551212,n,Voicemail(u1000)
exten => 14165551212,n,Hangup()
exten => 14165551212,n(call)+101,Voicemail(b1000)
exten => 14165551212,n,Hangup()

Conclusion
That’s pretty much all this chapter is going to teach you, but it’s nowhere near all
there is to learn. Hopefully, you are starting to get an idea of how big this Asterisk
thing really is.

In the next chapter, we’re going to try and predict the future of telecom, and we’ll dis-
cuss how (and why) we believe that Asterisk is well positioned to play a starring role.

,ch10.22432 Page 189 Wednesday, August 31, 2005 4:59 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

190

Chapter 11CHAPTER 11

Asterisk: The Future of Telephony

First they ignore you, then they laugh at you,
then they fight you, then you win.
—Mahatma Gandhi

We have arrived at the final chapter of this book. We’ve covered a lot, but we hope
that you now realize that we have barely begun to scratch the surface of this phe-
nomenon called Asterisk. To wrap things up, we want to spend some time exploring
what we might see from Asterisk and open source telephony in the near future.

While prognostication is always a thankless task, we are confident in asserting that
open source communications engines such as Asterisk herald a shift in thinking that
will transform the telecommunications industry. In this chapter, we will discuss
some of our reasons for this belief.

The Problems with Traditional Telephony
Although Alexander Graham Bell is most famously remembered as the father of the
telephone, the reality is that during the latter half of the 1800s, dozens of minds were
at work on the project of carrying voice over telegraph lines. These people were
mostly business-minded folks, looking to create a product through which they might
make their fortunes.

We have come to think of traditional telephone companies as monopolies, but this
was not true in their early days. The early history of telephone service took place in a
very competitive environment, with new companies springing up all over the world,
often with little or no respect for the patents they might be violating. Some of the
monopolies got their start through the waging (and winning) of patent wars.

It’s interesting to contrast the history of the telephone with the history of Linux and
the Internet. While the telephone was created as a commercial exercise, and the tele-
com industry was forged through lawsuits and corporate takeovers, Linux and the

,ch11.22585 Page 190 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Problems with Traditional Telephony | 191

Internet arose out of the academic community, which has always valued the sharing
of knowledge over profit.

The cultural differences are obvious. Telecommunications technologies tend to be
closed, confusing, and expensive, while networking technologies are generally open,
well documented, and competitive.

Closed Thinking
If one compares the culture of the telecommunications industry to that of the Inter-
net, it is sometimes difficult to believe the two are related. The Internet was designed
by enthusiasts, whereas contributing to the development of the PSTN is impossible
for any individual to contemplate. This is an exclusive club; membership is not open
to just anyone.*

The International Telecommunication Union (ITU) clearly exhibits this type of
closed thinking. If you want access to their knowledge, you have to be prepared to
pay for it. Membership requires proof of your qualifications, and you will be
expected to pay tens of thousands of dollars in annual dues.

Although the ITU is the United Nations’s sanctioned body responsible for interna-
tional telecommunications, many of the VoIP protocols (SIP, MGCP, RTP, STUN)
come not from the hallowed halls of the ITU, but rather from the IETF (which pub-
lishes all of its standards free to all, and allows anyone to submit an Internet Draft
for consideration).

Open protocols such as SIP may have a tactical advantage over ITU protocols such as
H.323 due to the ease with which one can obtain them. Although H.323 is widely
deployed by carriers as a VoIP protocol in the backbone, it is much more difficult to
find H.323-based endpoints; newer products are far more likely to support SIP.

The success of the IETF’s open approach has not gone unnoticed by the mighty ITU.
It has recently become possible to download up to three documents free of charge
from the ITU web site.† Openness is clearly on their minds. Recent statements by the
ITU suggest that there is a desire to achieve “Greater participation in ITU by civil
society and the academic world.” Mr. Houlin Zhao, the ITU’s Director of the Tele-
communication Standardization Bureau (TSB), believes that “ITU should take some
steps to encourage this.”‡

* Contrast this with the IETF’s membership page, which states: “The IETF is not a membership organization
(no cards, no dues, no secret handshakes :-)… It is open to any interested individual… Welcome to the IETF.”
Talk about community!

† Considering the thousands of documents available, and the fact that each document generally contains ref-
erences to dozens more, the value of this free information is difficult to judge.

‡ http://www.itu.int/ITU-T/tsb-director/itut-wsis/files/wg-wsis-Zhao-rev1.pdf.

,ch11.22585 Page 191 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

192 | Chapter 11: Asterisk: The Future of Telephony

The roadmap to achieving this openness is unclear, but they are beginning to realize
the inevitable.

As for Asterisk, it embraces both the past and the future—H.323 support is avail-
able, although the community has for the most part shunned H.323 in favor of the
IETF protocol SIP and the darling of the Asterisk community, IAX.

Limited Standards Compliancy
One of the oddest things about all the standards that exist in the world of legacy tele-
communications is the various manufacturers’ seeming inability to implement them
consistently. Each manufacturer desires a total monopoly, so the concept of interop-
erability tends to take a back seat to being first to market with a creative new idea.

The ISDN protocols are a classic example of this. Deployment of ISDN was (and in
many ways still is) a painful and expensive proposition, as each manufacturer
decided to implement it in a slightly different way. ISDN could very well have helped
to usher in a massive public data network, 10 years before the Internet. Unfortu-
nately, due to its cost, complexity, and compatibility issues, ISDN never delivered
much more than voice, with the occasional video or data connection for those will-
ing to pay. ISDN is quite common (especially in Europe, and in North America in
larger PBX implementations), but it is not delivering anywhere near the capabilities
that were envisioned for it.

As VoIP becomes more and more ubiquitous, the need for ISDN will disappear.

Slow Release Cycles
It can take months, or sometimes years, for the big guys to admit to a trend, let alone
release a product that is compatible with it. It seems that before a new technology
can be embraced, it must be analyzed to death, and then it must pass successfully
through various layers of bureaucracy before it is even scheduled into the develop-
ment cycle. Months or even years must pass before any useful product can be
expected. When those products are finally released, they are often based on hard-
ware that is obsolete; they also tend to be expensive and to offer no more than a min-
imal feature set.

These slow release cycles simply don’t work in today’s world of business communi-
cations. On the Internet, new ideas can take root in a matter of weeks and become
viable in extremely short periods of time. Since every other technology must adapt to
these changes, so too must telecommunications.

Open source development is inherently better able to adapt to rapid technological
change, which gives it an enormous competitive advantage.

,ch11.22585 Page 192 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Promise of Open Source Telephony | 193

The spectacular crash of the telecom industry may have been caused in large part by
an inability to change. Perhaps that continued inability is why recovery has been so
slow. Now, there is no choice: change, or cease to be. Community-driven technolo-
gies such as Asterisk will see to that.

Refusing to Let Go of the Past and Embrace the Future
Traditional telecommunications companies have lost touch with their customers.
While the concept of adding functionality beyond the basic telephone is well under-
stood, the idea that the user should be the one defining this functionality is not.

Nowadays, people have nearly limitless flexibility in every other form of communica-
tion. They simply cannot understand why telecommunications cannot be delivered
as flexibly as the industry has been promising for so many years. The concept of flex-
ibility is not familiar to the telecom industry, and very well might not be until open
source products such as Asterisk begin to transform the fundamental nature of the
industry. This is a revolution similar to the one Linux and the Internet willingly
started over 10 years ago (and IBM unwittingly started with the PC, 15 years before
that). What is this revolution? The commoditization of telephony hardware and soft-
ware, enabling a proliferation of tailor-made telecommunications systems.

Paradigm Shift
In his article “Paradigm Shift” (http://tim.oreilly.com/articles/paradigmshift_0504.
html), Tim O’Reilly talks about a paradigm shift that is occurring in the way technol-
ogy (both hardware and software) is delivered.* O’Reilly identifies three trends: the
commoditization of software, network-enabled collaboration, and software customiz-
ability (software as a service). These three concepts provide evidence to suggest that
open source telephony is an idea whose time has come.

The Promise of Open Source Telephony
Every good work of software starts by scratching a developer’s personal itch.

—Eric S. Raymond, The Cathedral and the Bazaar

In his book The Cathedral and the Bazaar (O’Reilly), Eric S. Raymond explains that
“Given enough eyeballs, all bugs are shallow.” The reason open source software
development produces such consistent quality is simple: crap can’t hide.

* Much of the following section is merely our interpretation of O’Reilly’s article. To get the full gist of these
ideas, the full read is highly recommended.

,ch11.22585 Page 193 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

194 | Chapter 11: Asterisk: The Future of Telephony

The Itch That Asterisk Scratches
In this era of custom database and web site development, people are not only tired of
hearing that their telephone system “can’t do that,” they quite frankly just don’t
believe it. The creative needs of the customers, coupled with the limitations of the
technology, have spawned a type of creativity born of necessity: telecom engineers
are like contestants in an episode of “Junkyard Wars,” trying to create functional
devices out of a pile of mismatched components.

The development methodology of a proprietary telephone system dictates that it will
have a huge number of features, and that the number of features will in large part
determine the price. Manufacturers will tell you that their products give you hun-
dreds of features, but if you only need five of them, who cares? Worse, if there’s one
missing feature you really can’t do without, the value of that system will be diluted
by the fact that it can’t completely address your needs.

The fact that a customer might only need five out of five hundred features is ignored,
and that customer’s desire to have five unavailable features that address the needs of
his business is dismissed as unreasonable.* Until flexibility becomes standard, telecom
will remain stuck in the last century—all the VoIP in the world notwithstanding.

Asterisk addresses that problem directly, and solves it in a way that few other tele-
com systems can. This is extremely disruptive technology, in large part because it is
based on concepts that have been proven time and time again: “the closed-source
world cannot win an evolutionary arms race with open-source communities that can
put orders of magnitude more skilled time into a problem.”†

Open Architecture
One of the stumbling blocks of the traditional telecommunications industry has been
its apparent refusal to cooperate with itself. The big telecommunications giants have
all been around for over a hundred years. The concept of closed, proprietary systems
is so ingrained in their culture that even their attempts at standards compliancy are
tainted by their desire to get the jump on the competition, by adding that one fea-
ture that no one else supports. For an example of this thinking, one simply has to
look at the VoIP products being offered by the telecom industry today. While they
claim standards compliance, the thought that you would actually expect to be able to

* From the perspective of the closed-source industry, their attitude is understandable. In his book The Myth-
ical Man-Month: Essays on Software Engineering (Addison-Wesley), Fred Brooks opined that “the complex-
ity and communication costs of a project rise with the square of the number of developers, while work done
only rises linearly.” Without a community-based development methodology, it is very difficult to deliver
products that at best are little more than incremental improvements over their predecessors, and at worst are
merely collections of patches.

† Eric S. Raymond, The Cathedral and the Bazaar.

,ch11.22585 Page 194 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Promise of Open Source Telephony | 195

connect a Cisco phone to a Nortel switch, or that an Avaya voicemail system could
be integrated via IP to a Siemens PBX, is not one that bears discussing.

In the computer industry, things are different. Twenty years ago, if you bought an
IBM server, you needed an IBM network and IBM terminals to talk to it. Now, that
IBM server is likely to interconnect to Dell terminals though a Cisco network (and
run Linux, of all things). Anyone can easily think of thousands of variations on this
theme. If any one of these companies were to suggest that we could only use their
products with whatever they told us, they would be laughed out of business.

The telecommunications industry is facing the same changes, but it’s in no hurry to
accept them. Asterisk, on the other hand, is in a big hurry to not only accept change,
but embrace it.

Cisco, Nortel, Avaya, and Polycom IP phones (to name just a few) have all been suc-
cessfully connected to Asterisk systems. There is no other PBX in the world today
that can make this claim. None.

Openness is the power of Asterisk.

Standards Compliance
In the past few years, it has become clear that standards evolve at such a rapid pace
that to keep up with them requires an ability to quickly respond to emerging technol-
ogy trends. Asterisk, by virtue of being an open source, community-driven develop-
ment effort, is uniquely suited to the kind of rapid development that standards
compliance demands.

Asterisk does not focus on cost-benefit analysis or market research. It evolves in
response to whatever the community finds exciting—or necessary.

Lightning-Fast Response to New Technologies
After Mark Spencer attended his first SIP Interoperability Test (SIPIT) event, he had
a rudimentary but working SIP stack for Asterisk coded within a few days. This was
before SIP had emerged as the protocol of choice in the VoIP world, but he saw its
value and momentum and ensured that Asterisk would be ready.

This kind of foresight and flexibility is typical in an open-source development com-
munity (and very unusual in a large corporation).

Passionate Community
The Asterisk-users list receives over three hundred email messages per day. Over ten
thousand people are subscribed to it. This kind of community support is unheard of
in the world of proprietary telecommunications, while in the open source world it is
commonplace.

,ch11.22585 Page 195 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

196 | Chapter 11: Asterisk: The Future of Telephony

The very first AstriCon event was expected to attract one hundred participants.
Nearly five hundred showed up (far more wanted to but couldn’t attend). This kind
of community support virtually guarantees the success of an open source effort.

Some Things That Are Now Possible
So what sorts of things can be built using Asterisk? Let’s look at some of the things
we’ve come up with.

Legacy PBX migration gateway

Asterisk can be used as a fantastic bridge between an old PBX and the future. You
can place it in front of the PBX as a gateway (and migrate users off the PBX as needs
dictate), or you can put it behind the PBX as a peripheral application server. You can
even do both at the same time, as shown in Figure 11-1.

Here are some of the options you can implement:

Keep your old PBX, but evolve to IP
Companies that have spent vast sums of money in the past few years buying pro-
prietary PBX equipment want a way out of proprietary jail, but they can’t stom-
ach the thought of throwing away all of their otherwise functioning equipment.
No problem—Asterisk can solve all kinds of problems, from replacing a voice-
mail system to providing a way to add IP-based users beyond the nominal capac-
ity of the system.

Figure 11-1. Asterisk as a PBX gateway

PSTN

VoIP

IP telephone

PBX telephone

Remote PBX

Legacy PBX

PRI/BRI/Analog
PRI/BRI/Analog

SI
P/

IA
X/

H3
23

Inbound call to DID

Delivered to
home office

VoIP call
Relayed out to

cell phone

Passed to PBX

Remote Asterisk

PRI/BRI/Analog

Delivered to
remote PBX

Cell phone

Database/Web/
Application server

,ch11.22585 Page 196 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Promise of Open Source Telephony | 197

Find-me-follow-me
Provide the PBX a list of numbers where you can be reached, and it will ring
them all whenever a call to your DID (Direct Inward Dialing, a.k.a. phone num-
ber) arrives. Figure 11-2 illustrates this technology.

VoIP calling
If a legacy telephony connection from an Asterisk PBX to an old PBX can be
established, Asterisk can provide access to VoIP services, while the old PBX con-
tinues to connect to the outside world as it always has. As a gateway, Asterisk
simply needs to emulate the functions of the PSTN, and the old PBX won’t know
that anything has changed. Figure 11-3 shows how you can use Asterisk to VoIP-
enable a legacy PBX.

Figure 11-2. Find-me-follow-me

Figure 11-3. VoIP-enabling a legacy PBX

PSTN

VoIP

IP telephone

PBX telephone

Legacy PBX

PRI/BRI/Analog PRI/BRI/Analog

SI
P/

IA
X/

H3
23

Inbound call to DID

Delivered to
home office

Relayed out to
cell phone

Passed to PBX

Cell phone

PSTN

VoIP

IP telephone

PBX telephone

Remote PBX

Legacy PBX

PRI/BRI/Analog
PRI/BRI/Analog

SI
P/

IA
X/

H3
23

Connection to
remote Asterisk

PRI/BRI/Analog

Delivered to
remote PBX

,ch11.22585 Page 197 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

198 | Chapter 11: Asterisk: The Future of Telephony

Low-barrier IVR

Many people confuse the term “Interactive Voice Response,” or IVR, with the Auto-
mated Attendant (AA). Since the Automated Attendant was the very first thing IVR
was used for, this is understandable. Nevertheless, to the telecom industry, the term
IVR represents far more than an AA. An AA generally does little more than present a
way for callers to be transferred to extensions, and it is built into most proprietary
voicemail systems—but IVR can be so much more.

IVR systems are generally very expensive, not only to purchase, but also to config-
ure. A custom IVR system will usually require connectivity to an external database or
application. Asterisk is arguably the perfect IVR, as it embraces the concepts of con-
nectivity to databases and applications at its deepest level.

Here are a few examples of relatively simple IVRs an Asterisk system could be used
to create:

Weather reporting
Using the Internet, you can obtain text-based weather reports from around the
world in a myriad of ways. Capturing these reports and running them through a
purpose-built parser (Perl would probably eat this up) would allow the informa-
tion to be available to the dialplan. Asterisk’s sound library already contains all
the required prompts, so it would not be an onerous task to produce an interac-
tive menu to play current forecasts for anywhere in the world.

Math programs
Ed Guy of Pulver.com did a presentation at Astricon 2004 in which he talked
about a little math program he’d cooked up for his daughter to use. The pro-
gram took him no more than an hour to write. What it did was present her with
a number of math questions, the answers to which she keyed into the telephone.
When all the questions were tabulated, the system presented her with her score.
This extremely simple Asterisk application would cost tens of thousands of dol-
lars to implement on any closed PBX platform, assuming it could be done at all.*

As is so often the case, things that are simple for Asterisk would be either impos-
sible or massively expensive with any other IVR system.

Distributed IVR
The cost of a proprietary IVR system is such that when a company with many
small retail locations wants to provide IVR, it is forced to transfer callers to a cen-
tral server to process the transactions. With Asterisk, it becomes possible to dis-
tribute the application to each node, and thus handle the requests locally. Literally
thousands of little Asterisk systems deployed at retail locations across the world
could serve up IVR functionality in a way that would be impossible to achieve with

* See Chapter 9 for further details.

,ch11.22585 Page 198 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Promise of Open Source Telephony | 199

any other system. No more long-distance transfers to a central IVR server, no more
huge trunking facility dedicated to the task—more power with less expense.

These are three rather simple examples of the potential of Asterisk.

Conference rooms

This little gem is going to end up being one of the killer functions of Asterisk. In the
Asterisk community, everyone finds themselves using conference rooms more and
more, for purposes such as these:

• Small companies need an easy way for business partners to get together for a
chat

• Sales teams have a meeting once per week where everyone can dial in from wher-
ever they are

• Development teams designate a common place and time to update each other on
progress

Home automation

Asterisk is still too much of an über-geek’s tool to be able to serve in the average
home, but with no more than average Linux and Asterisk skills, the following things
become plausible:

Monitoring the kids
Parents who want to check up on the babysitter (or the kids home alone) could
dial an extension context protected by a password. Once authenticated, a two-
way audio connection would be created to all the IP phones in the house, allow-
ing mom and dad to listen for trouble. Creepy? Yes. But an interesting concept
nonetheless.

Locking down your phones
Going out for the night? Don’t want the babysitter tying up the phone? No prob-
lem! A simple tweak to the dialplan, and the only calls that can be made are to
911, your cell phone, and the pizza parlor. Any other call attempt will get the
recording “We are paying you to babysit our kids, not make personal calls.”

Pretty evil, huh?

Controlling the alarm system
You get a call while on vacation that your mom wants to borrow some cooking
utensils. She forgot her key, and is standing in front of the house shivering. Piece
of cake; a call to your Asterisk system, a quick digit string into the context you
created for the purpose, and your alarm system is instructed to disable the alarm
for 15 minutes. Mom better get her stuff and get out quick, though, or the
cops’ll be showing up!

,ch11.22585 Page 199 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

200 | Chapter 11: Asterisk: The Future of Telephony

Managing teenagers’ calls
How about allocating a specific phone-time limit to your teenagers? To use the
phone, they have to enter their access codes. They can earn extra minutes by
doing chores, scoring all As, dumping that annoying bum with the bad haircut—
you get the idea. Once they’ve used up their minutes… click… you get your
phone back.

Incoming calls can be managed as well, via Caller ID. “Donny, this is Suzy’s
father. She is no longer interested in seeing you, as she has decided to raise her
standards a bit. Also, you should consider getting a haircut.”

The Future of Asterisk
We’ve come to love the Internet, both because it is so rich in content and inexpen-
sive and, perhaps more importantly, because it allows us to define how we commu-
nicate. As its ability to carry richer forms of media advances, we’ll find ourselves
using it more and more. Once Internet voice delivers quality that rivals (or betters)
the capabilities of the PSTN, the phone company had better look for another line of
business. The PSTN will cease to exist and become little more than one more com-
munications protocol the Internet happily carries for us. As with most of the rest of
the Internet, open source technologies will lead this transformation.

Speech Processing
The dream of having our technical inventions talk to us is older than the telephone
itself. Each new advance in technology spurs a new wave of eager experimentation.
Generally, results never quite meet expectations, possibly because as soon as a machine
says something that sounds intelligent, most people assume that it is intelligent.

People who program and maintain computers realize their limitations, and thus tend
to allow for their weaknesses. Everybody else just expects their computers and soft-
ware to work. The amount of thinking a user must do to interact with a computer is
often inversely proportional to the amount of thinking the design team did. Simple
interfaces belie complex design decisions.

The challenge, therefore, is to design a system that has anticipated the most com-
mon desires of its users, and can also adroitly handle unexpected challenges.

Festival

The Festival text-to-speech server can transform text into spoken words. While this
is a whole lot of fun to play with, there are many challenges to overcome.

For Asterisk, an obvious value of text to speech might be the ability to have your
telephone system read your emails back to you. Of course, if you’ve noticed the

,ch11.22585 Page 200 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Future of Asterisk | 201

somewhat poor grammar, punctuation, and spelling typically found in email mes-
sages these days, you can perhaps appreciate the challenges this poses.

One cannot help but wonder if the emergence of text to speech will inspire a new
generation of people dedicated to proper writing. Seeing spelling and punctuation
errors on the screen is frustrating enough—having to hear a computer speak such
things will require a level of Zazen that few possess.

Sphinx

If text to speech is rocket science, speech recognition is science fiction.

Speech recognition can actually work very well, but unfortunately this is generally
true only if you provide it with the right conditions—and the right conditions are not
those found on a telephone network. Even a perfect PSTN connection is considered
to be at the lowest acceptable limit for accurate speech recognition. Add in com-
pressed and lossy VoIP connections, or a cell phone, and you will discover far more
limitations than uses.

Asterisk has the potential to be a fantastic system for speech recognition, due to its
flexibility. Unfortunately, speech recognition itself is not yet mature enough to be
put to the kinds of uses we want of it. As this technology ripens, the open source
community is the most likely to embrace it and provide flexible, powerful platforms
on which to run it.

High-Fidelity Voice
As we gain access to more and more bandwidth, it becomes less and less easy to
understand why we still use low-fidelity codecs. Many people do not realize that
Skype uses a higher fidelity than a telephone; it’s a large part of the reason why
Skype has a reputation for sounding so good.

If you were ever to phone CNN, wouldn’t you love to hear James Earl Jones’s mellif-
luous voice saying “This is CNN,” instead of some tinny electronic recording? And if
you think Allison Smith* sounds good through the phone, you should hear her in
person!

In the future, we will expect, and get, high-fidelity voice though our communica-
tions equipment.

* Allison Smith is The Voice of Asterisk—it is her voice in all of the system prompts. To have Allison produce
your own prompt, simply visit http://thevoice.digium.com.

,ch11.22585 Page 201 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

202 | Chapter 11: Asterisk: The Future of Telephony

Video
Video is in some ways already compatible with Asterisk. The problem is not so much
one of functionality as one of bandwidth and processing power. More significantly, it
is not yet important enough to the community to merit the attention it needs.

The challenge of video-conferencing

The concept of video-conferencing has been around since the invention of the cath-
ode ray tube. The telecom industry has been promising a video-conferencing device
in every home for decades.

As with so many other communications technologies, if you have video-conferenc-
ing in your house, you are probably running it over the Internet, with a simple, inex-
pensive webcam. Still, it seems that people see video-conferencing as a bit gimmicky.
Yes, you can see the person you’re talking to, but there’s something missing.

Why we love video-conferencing

Video-conferencing promises a richer communications experience than the tele-
phone. Rather than hearing a disembodied voice, the nuances of speech that come
from eye-to-eye communication are possible.

Why video-conferencing may never totally replace voice

There are some challenges to overcome, though, and not all of them are technical.

Consider this: using a plain telephone, people working from their home offices can
have business conversations, un-showered, in their underwear, feet on the desk, cof-
fee in hand—if they use a telephone. A similar video conversation would require half
an hour of grooming to prepare for, and couldn’t happen in the kitchen, on the
patio, or… well, you get the idea.

Also, the promise of eye-to-eye communication over video will never happen as long
as the focal points of the participants are not in line with the cameras. If you look at
the camera, your audience will see you looking at them, but you won’t see them. If
you look at your screen to see whom you are talking to, the camera will show you
looking down at something—not at your audience. That looks impersonal. Perhaps
if a videophone could be designed like a Tele-Prompt-R, where the camera was
behind the screen, it wouldn’t feel so unnatural. As it stands, there’s something psy-
chological that’s missing. Video ends up being a gimmick.

Wireless
Since Asterisk is fully VoIP-enabled, wireless is all part of the package.

,ch11.22585 Page 202 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Future of Asterisk | 203

Wi-Fi

Wi-Fi is going to be the office mobility solution for VoIP phones. This technology is
already quite mature. The biggest hurdle is the cost of handsets, which can be expected
to improve as competitive pressure from around the world drives down prices.

Wi-MAX

Since we are so bravely predicting so many things, it’s not hard to predict that Wi-
MAX spells the beginning of the end for traditional cellular telephone networks.

With wireless Internet access within the reach of most communities, what value will
there be in expensive cellular service?

Unified Messaging
This is a term that has been hyped by the telecom industry for years, but adoption
has been far slower than predicted.

Unified Messaging is the concept of tying voice and text-messaging systems into one.
With Asterisk, the two don’t need to be artificially combined, as Asterisk already
treats them the same way.

Just by examining the terms, unified and messaging, we can see that the integration of
email and voicemail must be merely the beginning—Unified Messaging needs to do a
lot more than just that if it is to deserve its name.

Perhaps we need to define “messaging” as communication that does not occur in real
time. In other words, when you send a message, you expect that the reply may take
moments, minutes, hours, or even days to arrive. You compose what you wish to
say, and your audience is expected to compose a reply.

Contrast this with conversing, which happens in real time. When you talk to some-
one on a telephone connection, you expect no more than a few seconds’ delay before
the response arrives.

Tim O’Reilly delivered a speech entitled “Watching the Alpha Geeks: OS X and the
Next Big Thing” (http://www.macdevcenter.com/pub/a/mac/2002/05/14/oreilly_
wwdc_keynote.html), in which he talked about someone piping IRC through a text-
to-speech engine. One could imagine doing the reverse as well, allowing us to join an
IRC or Instant Messaging chat over our Wi-Fi phone, our Asterisk PBX providing the
speech-to-text-to-speech translations.

Peering
As monopoly networks such as the PSTN give way to community-based networks
like the Internet, there will be a period of time where it is necessary to interconnect
the two. While the traditional providers would prefer that the existing model be

,ch11.22585 Page 203 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

204 | Chapter 11: Asterisk: The Future of Telephony

carried into the new paradigm, it is increasingly likely that telephone calls will
become little more than another application the Internet happily carries.

But a challenge remains: how to manage the telephone numbering plan with which
we are all familiar and comfortable?

E.164

The ITU defined a numbering plan in their E.164 specification. If you’ve used a tele-
phone to make a call across the PSTN, you can confidently state that you are familiar
with the concept of E.164 numbering. Prior to the advent of publicly available VoIP,
nobody cared about E.164 except the telephone companies—nobody needed to.

Now that calls are hopping from PSTN to Internet to who-knows-what, some con-
sideration must be given to E.164.

ENUM

In response to this challenge, the IETF has sponsored the Telephone Number Map-
ping (ENUM) working group, the purpose of which is to map E.164 numbers into
the Domain Name System (DNS).

While the concept of ENUM is sound, it requires cooperation from the telecom
industry to achieve success. However, cooperation is not what the telecom industry
is famous for, and thus far ENUM has foundered.

e164.org

The folks at e164.org are trying to contribute to the success of ENUM. You can log
on to this site, register your phone number, and inform the system of alternative
methods of communicating with you. This means that someone who knows your
phone number can connect a VoIP call to you, as the e164.org DNS zone will pro-
vide the IP addressing and protocol information needed to connect to your location.

As more and more people publish VoIP connectivity information, fewer and fewer
calls will be connected through the PSTN.

DUNDi

Distributed Universal Number Discovery (DUNDi) is an open routing protocol
designed to maintain dynamic telecom routing tables between compatible systems.*

While Asterisk is currently the only PBX to support DUNDi, the openness of the
standard ensures that anyone can implement it.

DUNDi has huge potential, but it is very much in its infancy. This is the one to watch.

* See the previous chapter for more information.

,ch11.22585 Page 204 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Future of Asterisk | 205

Challenges
As is true with any worthwhile thing, Asterisk will face challenges. Let’s take a glance
at what some of them may be.

Too much change, too few standards

These days, the Internet is changing so fast, and offers so much diverse content, that
it is impossible for even the most attentive geek to keep on top of it all. While this is
as it should be, it also means that an enormous amount of technology churn is an
inevitable part of keeping any communications system current.

VoIP spam

Yes, it’s coming. There will always be people who believe they have the right to
inconvenience and harass others in their pursuit of money. Efforts are underway to
try and address this, but only time will tell how efficacious they will be.

Fear, uncertainty, and doubt

The industry is making the transition from ignorance to laughter. If Gandhi is cor-
rect, we can expect the fight to begin soon.

As their revenue streams become increasingly threatened by open source telephony,
the traditional industry players are certain to mount a fear campaign, in hopes of
undermining the revolution.

Bottleneck engineering

There is a rumor making the rounds that the major network providers will begin to
artificially cripple VoIP traffic by tagging and prioritizing the traffic of their premium
VoIP services and, worse, detecting and bumping any VoIP traffic generated by ser-
vices not approved by them.

Some of this is already taking place, with service providers blocking traffic of certain
types through their networks, ostensibly due to some public service being rendered
(such as blocking popular file-sharing services to protect us from piracy). In the
United States, the FCC has taken a clear stand on the matter and fined companies
that engage in such practices. In the rest of the world, regulatory bodies are not
always as accepting of VoIP.

What seems clear is that the community and the network will find ways around
blockages, just as they always have.

Regulatory wars

The recently departed Chairman of the United States Federal Communications Com-
mission, Michael Powell, delivered a gift that may well have altered the path of the

,ch11.22585 Page 205 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

206 | Chapter 11: Asterisk: The Future of Telephony

VoIP revolution. Rather than attempting to regulate VoIP as a telecom service, he has
championed the concept that VoIP represents an entirely new way of communicat-
ing and requires its own regulatory space in which to evolve.

VoIP will become regulated, but not everywhere as a telephony service. Some of the
regulations that may be created include:

Presence information for emergency services
One of the characteristics of a traditional PSTN circuit is that it is always in the
same location. This is very helpful to emergency services, as they can pinpoint
the location of a caller by identifying the address of the circuit from which the
call was placed. The proliferation of cell phones has made this much more diffi-
cult to achieve, since a cell phone does not have a known address. A cell phone
can be plugged into any network and can register to any server. If the phone
does not identify its physical location, an emergency call from it will provide no
clue as to the where the caller is. VoIP creates similar challenges.

Call monitoring for law enforcement agencies
Law enforcement agencies have always been able to obtain wiretaps on tradi-
tional circuit-switched telephone lines. While regulations are being enacted that
are designed to achieve the same end on the network, the technical challenge of
delivering this functionality will probably never be completely solved. People
value their privacy, and the more governments want to stifle it, the more effort
will be put toward maintaining it.

Anti-monopolistic practices
These practices are already being seen in the U.S., with fines being levied against
network providers who attempt to filter traffic based on content.

When it comes to regulation, Asterisk is both a saint and a devil: a saint because it
feeds the poor, and a devil because it empowers the phrackers and spammers like
nothing ever has. The regulation of open source telephony may in part be deter-
mined by how well the community regulates itself. Concepts such as DUNDi, which
incorporate anti-spam processes, are an excellent start. On the other hand, concepts
such as Caller ID-spoofing are ripe with opportunities for abuse.

Quality of Service
Due to the best-effort reality of the TCP/IP-based Internet, it is not yet known how
well increasing real-time VoIP traffic will affect overall network performance. Cur-
rently, there is so much excess bandwidth in the backbone that best-effort delivery is
generally quite good indeed. Still, it has been proven time and time again that when-
ever we are provided with more bandwidth, we figure out a way to use it up. The
1-MB DSL connection undreamt of 5 years ago is now barely adequate.

Perhaps a corollary of Moore’s Law* will apply to network bandwidth. QoS may
become moot, due to the network’s ability to deliver adequate performance without

* Gordon Moore wrote a paper in 1965 that predicted the doubling of transistors on a processor every few years.

,ch11.22585 Page 206 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Future of Asterisk | 207

any special processing. Organizations that require higher levels of reliability may
elect to pay a premium for a higher grade of service. Perhaps the era of paying by the
minute for long-distance connections will give way to paying by the millisecond for
guaranteed low latency, or by the percentage point for reduced packet loss. Pre-
mium services will offer the five-nines* reliability the traditional telecom companies
have always touted as their advantage over VoIP.

Complexity

Open systems require new approaches toward solution design. Just because the
hardware and software are cheap doesn’t mean the solution will be. Asterisk does
not come out of the box ready to run; it has to be designed and built, and then main-
tained. While the base software is free, and the hardware costs will be based on com-
modity pricing, it is fair to say that the configuration costs for a highly customized
system will be a sizeable part of the solution costs—in many cases, because of its
high degree of complexity and configurability, more than would be expected with a
traditional PBX.

The rule of thumb is generally considered to be something like this: if it can be done
in the dialplan, the system design will be roughly the same as for any similarly fea-
tured traditional PBX. Beyond that, only experience will allow one to accurately esti-
mate the time required to build a system.

There is much to learn.

Opportunities
Open source telephony creates limitless opportunities. Here are some of the more
compelling ones.

Tailor-made private telecommunications networks

Some people would tell you that price is the key, but we believe that the real reason
Asterisk will succeed is because it is now possible to build a telephone system as one
would a web site: with complete, total customization of each and every facet of the
system. Customers have wanted this for years. Only Asterisk can deliver.

* This term refers to 99.999%, which is touted as the reliability of traditional telecom networks. Achieving five
nines requires that service interruptions for an entire year total no more than 5 minutes and 15 seconds.
Many people believe that VoIP will need to achieve this level of reliability before it can be expected to fully
replace the PSTN. Many other people believe that the PSTN doesn’t even come close to five-nines reliability.
We believe that this could have been an excellent term to describe high reliability, but marketing depart-
ments abuse it far too frequently.

,ch11.22585 Page 207 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

208 | Chapter 11: Asterisk: The Future of Telephony

Low barrier to entry

Anyone can contribute to the future of communicating. It is now possible for someone
with an old $200 PC to develop a communications system that has intelligence to rival
the most expensive proprietary systems. Granted, the hardware would not be produc-
tion-ready, but there is no reason the software couldn’t be. This is one of the reasons
why closed systems will have a hard time competing. The sheer number of people who
have access to the required equipment is impossible to equal in a closed shop.

Hosted solutions of similar complexity to corporate web sites

The design of a PBX was always a kind of art form, but before Asterisk, the art lay in
finding creative ways to overcome the limitations of the technology. With limitless
technology, those same creative skills can now be properly applied to the task of
completely answering the needs of the customer. Open source telephony engines
such as Asterisk will enable this. Telecom designers will dance for joy, as their con-
siderable creative skills will now actually serve the needs of their customers, rather
than be focused on managing kludge.

Proper integration of communications technologies

Ultimately, the promise of open source comes to nothing if it cannot fulfill the need
people have to solve problems. The closed industries lost sight of the customer, and
tried to fit the customer to the product.

Open source telephony brings voice communications in line with other information
technologies. It is finally possible to properly begin the task of integrating email,
voice, video, and anything else we might conceive of over flexible transport net-
works (whether wired or wireless), in response to the needs of the user, not the
whims of monopolies.

Welcome to the future of telecom!

,ch11.22585 Page 208 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

209

Appendix A APPENDIX A

VoIP Channels

VoIP channels in Asterisk represent connections to the protocols they support. Each
protocol you wish to use requires a configuration file, containing general parameters
defining how your system handles the protocol as well as specific parameters for
each channel (or device) you will want to reference in your dialplan. In this appen-
dix, we’ll take an in-depth look at the IAX and SIP configuration files.

IAX
The IAX configuration file (iax.conf) contains all of the configuration information
Asterisk needs to create and manage IAX protocol channels. The sections in the file
are separated by headings, which are formed by a word framed in square brackets
([]). The name in the brackets will be the name of the channel, with one notable
exception: the [general] section, which is not a channel, is the area where global
protocol parameters are defined.

This section examines the various general and channel-specific settings for iax.conf.
We will define each parameter, and then give an example of its use. Certain options
may have several valid arguments. These arguments are listed beside the option, sep-
arated with the pipe symbol (|). For example, bandwidth=low|medium|high means that
the bandwidth option accepts one of the values low, medium, or high as its argument.

You can insert comments anywhere in the iax.conf file, by preceding the comment
text with the semicolon character (;). Everything to the right of the semicolon will be
ignored. Feel free to use comments liberally.

General IAX Settings
The first non-comment line in your iax.conf file must be the heading [general]. The
parameters in this section will apply to all connections using this protocol, unless
defined differently in a specific channel’s definition. Since some of these settings can

,appa.22741 Page 209 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

210 | Appendix A: VoIP Channels

be defined on a per-channel basis, we have identified settings that are always global
with the tag “(global)” and those that can optionally be configured for individual
channels with the tag “(channel).” If you define a channel parameter under the
[general] section, you do not need to define it in each channel; its value becomes the
default. Keep in mind that setting a parameter in the [general] section does not pre-
vent you from setting it differently for specific channels; it merely makes this setting
the default. Also keep in mind that not defining these parameters may, in some cases,
cause a system default to be used instead.

Here are the parameters that you can configure:

accountcode (channel)
The account code can be defined on a per-user basis. If defined, this account
code will be assigned to a call record whenever no specific user account code is
set. The accountcode name configured will be used as the filename.csv in the /var/
log/asterisk/cdr-csv/ directory to store Call Detail Records (CDRs) for the user/
peer/friend.

accountcode=iax-username

allow and disallow (channel)
Specific codecs can be allowed or disallowed, limiting codec use to those pre-
ferred by the system designer. allow and disallow can also be defined on a per-
channel basis. Keep in mind that allow statements in the [general] section will
carry over to each of the channels, unless you reset with a disallow=all. Codec
negotiation is attempted in the order in which the codecs are defined. Best prac-
tice suggests that you define disallow=all, followed by explicit allow statements
for each codec you wish to use. If nothing is defined, allow=all is assumed.

disallow=all
allow=ulaw
allow=gsm
allow=ilbc

amaflags (channel)
Automatic Message Accounting (AMA) is defined in the Telcordia Family of
Documents listed under FR-AMA-1. These documents specify standard mecha-
nisms for generation and transmission of CDRs. You can specify one of four
AMA flags to apply to all IAX connections.

amaflags=default|omit|billing|documentation

authdebug (global)
You can minimize the amount of authorization debugging by disabling it with
authdebug=no. Authorization debugging is enabled by default if not explicitly
disabled.

authdebug=no

autokill (global)
To minimize the danger of stalling when a host is unreachable, you can set
autokill to yes to specify that any new connection should be torn down if an ACK

,appa.22741 Page 210 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

IAX | 211

is not received within 2,000 ms. (This is obviously not advised for hosts with
high latency.) Alternatively, you can replace yes with the number of millisec-
onds to wait before considering a peer unreachable. autokill configures the wait
for all IAX2 peers, but you can configure it differently for individual peers with
the use of the qualify command.

autokill=1500

bandwidth (channel)
bandwidth is a shortcut that may help you get around using disallow=all and
multiple allow statements to specify which codecs to use. The valid options are:

high
Allows all codecs (G.723.1, GSM, ulaw, alaw, G.726, ADPCM, slinear,
LPC10, G.729, Speex, iLBC).

medium
Allows all codecs except slinear, ulaw, and alaw.

low
Allows all medium codecs except G.726 and ADPCM.

bandwidth=low|medium|high

bindport and bindaddr (global)
These optional parameters allow you to control the IP interface and port on
which you wish to accept IAX connections. If omitted, the port will be set to
4569, and all IP addresses in your Asterisk system will accept incoming IAX con-
nections. If multiple bind addresses are configured, only the defined interfaces
will accept IAX connections. The address 0.0.0.0 tells Asterisk to listen on all
interfaces.

bindport=4569
bindaddr=192.168.0.1

codecpriority (channel)
The codecpriority option controls which end of an inbound call leg will have
priority over the negotiation of codecs. If set in the [general] section, the
selected options will be inherited by all user entries in the channel configuration
file; however, they can be defined in the individual user entries for more granu-
lar control. If set in both the [general] and user sections, the user entry will
override that which is configured in the [general] section. If this parameter is
not configured, the value defaults to host.

Valid options include:

caller
The inbound caller has priority over the host.

host
The host has priority over the inbound caller.

,appa.22741 Page 211 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

212 | Appendix A: VoIP Channels

disabled
Codec preferences are not considered—this is the default behavior before
the implementation of codec preferences.

reqonly
Codec preferences are ignored, and the call is accepted only if the requested
codec is available.

codecpriority=caller|host|disabled|reqonly

delayreject (global)
If an incorrect password is received on an IAX channel, this will delay the send-
ing of the REGREQ or AUTHREP reject messages, which will help to secure against
brute-force password attacks. The delay time is 1,000 ms.

delayreject=yes|no

forcejitterbuffer (channel)
Since Asterisk attempts to bridge channels (endpoints) directly together, the end-
points are normally allowed to perform jitter buffering themselves. However, if
the endpoints have a poor jitter buffer implementation, you may wish to force
Asterisk to perform jitter buffering no matter what. You can force jitter buffer-
ing to be performed with forcejitterbuffer=yes.

forcejitterbuffer=yes

jitterbuffer (channel)
Jitter refers to the varying latency between packets. When packets are sent from
an end device, they are sent at a constant rate with very little latency variation.
However, as the packets traverse the Internet, the latency between the packets
may become varied; thus, they may arrive at the destination at different times,
and possibly even out of order.

The jitter buffer is, in a sense, a staging area where the packets can be reordered
and delivered in a regulated stream. Without a jitter buffer, the user may per-
ceive anomalies in the stream, experienced as static, strange sound effects, gar-
bled words, or, in severe cases, missed words or syllables.

The jitter buffer affects only data received from the far end. Any data you trans-
mit will not be affected by your jitter buffer, as the far end will be responsible for
the de-jittering of its incoming connections.

The jitter buffer is enabled with the use of jitterbuffer=yes.
jitterbuffer=yes|no

language (channel)
This sets the language flag to whatever you define. The global default language is
English. The language that is set is sent by the channel as an information ele-
ment. It is also used by applications such as SayNumber() that have different files
for different languages. Keep in mind that languages other than English are not
explicitly installed on the system, and it is up to you to configure the system to
ensure that the language you specify is handled properly.

language=en

,appa.22741 Page 212 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

IAX | 213

mailboxdetail (global)
If mailboxdetail is set to yes, the new/old message count is sent to the user,
instead of a simple statement of whether new and old messages exist.
mailboxdetail can also be set on a per-peer basis.

mailboxdetail=yes

maxjitterbuffer (channel)
This parameter is used to set the maximum size of the jitter buffer, in millisec-
onds. Be sure not to set maxjitterbuffer too high, or you will needlessly increase
your latency.

maxjitterbuffer=500

regcontext (channel)
By specifying the context that contains the actions to perform, you can config-
ure Asterisk to perform a number of actions when a peer registers to your server.
This option works in conjunction with regexten, by specifying the extension to
execute. If no regexten is configured, the peer name is used as the extension.
Asterisk will dynamically create and destroy a NoOp at priority 1 for the exten-
sion. All actions to be performed upon registration should start at priority 2.
More than one regexten may be supplied, if separated by an &. regcontext can be
set on a per-peer basis or globally.

regcontext=registered-phones

regexten (channel)
The regexten option is used in conjunction with regcontext to specify the exten-
sion to be executed within the configured context. If regexten is not explicitly
configured, the peer name is used as the extension to match.

regexten=myphone

resyncthreshold (channel)
The resynchronize threshold is used to resynchronize the jitter buffer if a signifi-
cant change is detected over a few frames, assuming that the change was caused
by a timestamp mixup. The resynchronization threshold is defined as the mea-
sured jitter plus the resyncthreshold value, defined in milliseconds.

resyncthreshold=1000

tos (global)
Asterisk can set the Type of Service (TOS) bits in the IP header to help improve
performance on routers that respect TOS bits in their routing calculations. The
following values are valid:

lowdelay
Minimize delay.

throughput
Maximize throughput.

reliability
Maximize reliability.

,appa.22741 Page 213 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

214 | Appendix A: VoIP Channels

mincost
Minimize cost.

none
No bits set.

tos=lowdelay|throughput|reliability|mincost|none

trunk (channel)
IAX2 trunking enables Asterisk to send media (as mini-frames) from multiple
channels using a single header. The reduction in overhead makes the IAX2 pro-
tocol more efficient when sending multiple streams to the same endpoint (usu-
ally another Asterisk server).

trunk=yes|no

trunkfreq (channel)
trunkfreq is used to control how frequently you send trunk messages, in milli-
seconds. Trunk messages are sent in conjunction with the trunk=yes command.

trunkfreq=20

register Statements
The register switch (register =>) is used to register your Asterisk box to a remote
server—this lets the remote end know where you are, in case you are configured with
a dynamic IP address. Note that register statements are used only when the remote
end has you configured as a peer, and when host=dynamic.

The basic format for a register statement is:

register => username:password@remote-host

The password is optional (if not configured on the remote system).

Retrieving Dialplan Information from a Remote Asterisk Box
Asterisk can retrieve dialplan information from another Asterisk box with the use of a
switch => statement. When this occurs, the Asterisk IAX channel driver must wait for
a reply from the remote box before it can continue with other IAX-related processes.
This is especially troubling when you have multiple switch statements nested through-
out multiple boxes—if a switch statement has to traverse several boxes, there could be
an appreciable delay before a result is returned.

When the global iaxcompat option is set to yes, Asterisk will spawn a separate thread
when the switch lookup is being performed. The use of this thread allows the main IAX
channel driver to continue on with other processes while the thread waits for the reply.
A small performance hit is incurred with this option.

iaxcompat=yes|no

,appa.22741 Page 214 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

IAX | 215

Alternatively, you can specify an RSA key by framing the appropriate RSA key name*

in square brackets ([]):

register => username:[rsa-key-name]@remote-host

By default, register requests will be sent via port 4569. You can direct them to a dif-
ferent port by explicitly specifying it, as follows:

register => username:password@remote-host:1234

IAX Channel Definitions
With the general settings defined, we can now define our channels. Defining a guest
channel is recommended whenever you want to accept anonymous IAX calls. This is
a very common way for folks in the Asterisk community to contact one another.
Before you decide that this is not for you, keep in mind that anyone whom you want
to be able to connect to you via IAX (without you specifically configuring an account
for them) will need to connect as a guest. This account, in effect, becomes your “IAX
phone number.” Your guest channel definition should look something like this:

[guest]
type=user
context=incoming
callerid="Incoming IAX Guest"

No doubt the spammers will find a way to harass these addresses, but
in the short term this has not proven to be a problem. In the long
term, we’ll probably use DUNDi.†

If you wish to accept calls from the Free World Dialup network, Asterisk comes with
a predefined security key that ensures that anonymous connections cannot spoof an
incoming Free World Dialup call. You’ll want to set up an iaxfwd channel:

[iaxfwd]
type=user
context=incoming
auth=rsa
inkeys=freeworlddialup

If you have resources advertised on a DUNDi network, the associated user must be
defined in iax.conf:

[dundi]
type=user
dbsecret=dundi/secret
context=dundi-incoming

* Asterisk RSA keys are typically located in /var/lib/asterisk/keys/. You can generate your own keys using the
astkeygen script.

† See Chapter 9 for more information regarding DUNDi.

,appa.22741 Page 215 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

216 | Appendix A: VoIP Channels

If you have IAX-based devices (such as an IAXy), or IAX-based users at a remote
node, you may want to provide them with their own channels with which to con-
nect to the system.

Let’s say you have a user on a remote node for whom you want to define an IAX
channel. We’ll call this hypothetical channel sushi. The channel definition might
look something like this:

[sushi]
type=user
context=local_users
auth=md5,plaintext,rsa
secret=wasabi
notransfer=yes
jitterbuffer=yes
callerid="Happy Tempura" <(800) 555-1234>
accountcode=seaweed
deny=0.0.0.0/0.0.0.0

IAX Authentication
IAX provides authentication mechanisms to allow for a reasonable level of security
between endpoints. This does not mean that the audio information cannot be captured
and decoded, but it does mean that you can more carefully control who is allowed to
make connections to your system. Three levels of security are supported on IAX chan-
nels. The auth option defines which authentication method to use on the channel:
plaintext, md5, or rsa.

plaintext, in IAX, offers very little security. While it will prevent connection to the
channel unless a valid password is supplied, the fact that the password is stored in iax.
conf in plain text and is transmitted and received as plain text makes this a very inse-
cure authentication method.

md5 improves the security on the network connection; however, both ends still require
a plain-text secret in the iax.conf file. Here’s how it works: Box A requests a connec-
tion with Box B, which in turn replies with an authorization request including a ran-
domly generated number. Box A then generates an MD5 hash using the value supplied
in the secret field of iax.conf and the random number from Box B. The hash is returned
in the authorization reply, and Box B compares it to the hash it generated locally. If the
hashes match, authorization is granted.

rsa provides the most security. Before using RSA, each end must create a public and
private key pair through the astgenkey script, typically located in /usr/src/asterisk/
contrib/scripts/. The public key must then be given to the far end. Each end of the cir-
cuit must include the public key of the far end in its channel definition, using the
inkeys and outkey parameters.

RSA keys are stored in /var/lib/asterisk/keys/. Public keys are named name.pub; private
keys are named name.key. Private keys must be encrypted with 3DES.

,appa.22741 Page 216 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

IAX | 217

permit=192.168.1.100/255.255.255.0
language=en

Incoming calls for this channel will arrive in the context local_users and will ask the
system to accept the Caller ID Happy Tempura <(800) 555-1234>. The system will be
willing to accept MD5, plain-text, or RSA authentication from this user, so long as the
password wasabi is provided and the call comes from the IP address 192.168.1.100. All
calls related to this channel will be assigned the account code seaweed. Because we’ve
defined notransfer, the media path for this channel will always pass through Asterisk;
it cannot be redirected to another IAX node.

If you yourself are a remote node, and you need to connect into a remote node as a
user, you would define that main node as your peer:

[sashimi_platter]
type=peer
username=sushi
secret=wasabi
host=192.168.1.101
qualify=yes
trunk=yes

A peer can be referenced from the dialplan with the name contained in square brack-
ets but authenticate with a different username. The host is specified using either IP
dotted notation or a fully qualified domain name (FQDN). You can determine the
latency between you and the remote host, and whether the peer is alive, with
qualify=yes. To minimize the amount of overhead for multiple calls going to the
same peer, you can trunk them.

Trunking is unique to IAX and is designed to take advantage of the fact that two large
sites may have multiple simultaneous VoIP connections between them. IAX trunk-
ing reduces overhead by loading several channels into each signaling packet. You can
enable trunking for a channel with trunk=yes in iax.conf.

Figure A-1 shows a channel with trunking disabled, and Figure A-2 shows a channel
with trunking enabled.

Figure A-1. Trunking disabled

Figure A-2. Trunking enabled

Signaling and
framing (converted)

Payload
(voice)

Signaling and
framing (converted)

Payload
(voice)

Signaling and
framing (converted)

Payload
(voice)

Signaling and
framing (overhead)

Payload
(voice)

Payload
(voice)

Payload
(voice)

,appa.22741 Page 217 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

218 | Appendix A: VoIP Channels

Channel-specific parameters

Now, let’s take a look at the channel-specific parameters:

callerid
You can set a suggested Caller ID string for a user or peer with callerid. If you
define a Caller ID field for a user, any calls that come in on that channel will
have that Caller ID assigned to them, regardless of what the far end sends to
you. If you define Caller ID for a peer, you are requesting that the far end use
that to identify you (although you have no way of ensuring it will do so). If you
want incoming users to be able to define their own Caller IDs (i.e., for guests),
make sure you do not set the callerid field.

callerid=John Smith <(800) 555-1234>

defaultip
The defaultip setting complements host=dynamic. If a host has not yet regis-
tered with your server, you’ll attempt to send messages to the default IP address
configured here.

defaultip=192.168.1.101

inkeys
You can use the inkeys option to authenticate a user with the use of an RSA key.
To associate more than one RSA key with a user channel definition, separate the
key names with a colon (:). Any one of those keys will be sufficient to validate a
connection. The “inkey” is the public key you distribute to your users.

inkeys=server_one:server_two

mailbox
If you associate a mailbox with a peer within the channel definition, voicemail
will send a message waiting indication (MWI) to the nodes on the end of that
channel. If the mailbox number is in a voicemail context other than default, you
can specify it as mailbox@context. To associate multiple mailboxes with a single
peer, use multiple mailbox statements.

mailbox=1000@internal

outkey
You can use the outkey option to authenticate a peer with the use of an RSA key.
Only one RSA key may be used for outgoing authentication. The “outkey” is not
distributed; it is your private key.

outkey=private_key

qualify
You can set qualify to yes, no, or a time in milliseconds. If you set qualify=yes,
PING messages will be sent periodically to the remote peers to determine whether
they are available and what the latency between replies is. The peers will respond
with PONG messages. A peer will be determined unreachable if no reply is received
within 2,000 ms (to change this default, instead set qualify to the number of
milliseconds to wait for the reply).

,appa.22741 Page 218 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

SIP | 219

sendani
The SS7 PSTN network uses Automatic Number Identification (ANI) to identify a
caller, and Caller ID is what is delivered to the user. The Caller ID is generated
from the ANI, so it’s easy to confuse the two. Blocking Caller ID sets a privacy flag
on the ANI, but the backbone network still knows where the call is coming from.

sendani=yes

ANI has been around for a while. Its original purpose was to deliver
the billing number of the originating party on a long-distance call to
the terminating office. Unlike Caller ID, ANI does not require SS7, as
it can be transmitted using DTMF. Also, ANI cannot be blocked.

SIP
Just as with IAX, the SIP configuration file (sip.conf) contains configuration informa-
tion for SIP channels. The headings for the channel definitions are formed by a word
framed in square brackets ([])—again, with the exception of the [general] section,
where we define global SIP parameters. Don’t forget to use comments generously in
your sip.conf file. Precede the comment text with a semicolon; everything to the right
will be ignored.

General SIP Parameters
The following options are to be used within the [general] section of sip.conf:

allowguest
If set to no, this disallows guest SIP connections. The default is to allow guest
connections. SIP normally requires authentication, but you can accept calls from
users who do not support authentication (i.e., do not have a secret field
defined). Certain SIP appliances (such as the Cisco Call Manager v4.1) do not
support authentication, so they will not be able to connect if you set
allowguest=no.

allowguest=no

bindaddr and bindport
These optional parameters allow you to control the IP interface and port on
which you wish to accept SIP connections. If omitted, the port will be set to
5060, and all IP addresses in your Asterisk system will accept incoming SIP con-
nections. If multiple bind addresses are configured, only those interfaces will lis-
ten for connections. The address 0.0.0.0 tells Asterisk to listen on all interfaces.

bindaddr=0.0.0.0
bindport=5060

,appa.22741 Page 219 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

220 | Appendix A: VoIP Channels

callevents
Set this to yes when you want SIP to generate Manager events. This will be
important if you have external programs that use the Asterisk Manager inter-
face, such as the Flash Operator Panel.

callevents=yes

checkmwi
This option specifies the default amount of time, in seconds, between mailbox
checks for peers.

checkmwi=30

compactheaders
You can set compactheaders to yes or no. If it’s set to yes, the SIP headers will use
a compact format, which may be required if the size of the SIP header is larger
than the maximum transmission unit (MTU) of your IP headers, causing the IP
packet to be fragmented. Do not use this option unless you know what you are
doing.

compactheaders=no

defaultexpirey
This sets the default SIP registration expiration time, in seconds, for incoming
and outgoing registrations. A client will normally define this value when it ini-
tially registers, so the default value you set here will be used only if the client
does not specify a timeout when it registers. If you are registering to another user
agent server (UAS), this is the registration timeout that it will send to the far end.

defaultexpirey=300

externhost
externhost takes a fully qualified domain name as its argument. If Asterisk is
behind NAT, the SIP header will normally use the private IP address assigned to
the server. If you set this option, Asterisk will perform periodic DNS lookups on
the hostname and replace the private IP address with the IP address returned
from the DNS lookup.

externhost=my.hostname.tld

The use of externhost is not recommended in production systems,
because if the IP address of the server changes, the wrong IP address
will be set in the SIP headers until the next lookup is performed. The
use of externip is recommended instead.

externip
externip takes an IP address as its argument. If Asterisk is behind NAT, the SIP
header will normally use the private IP address assigned to the server. The
remote server will not know how to route back to this address; thus, it must be
replaced with a valid, routable address.

externip=216.239.39.104

,appa.22741 Page 220 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

SIP | 221

externrefresh
If externhost is used, externrefresh configures how long, in seconds, should
pass between DNS lookups.

externrefresh=30

localnet
localnet is used to tell Asterisk which IP addresses are considered local, so that
the address in the SIP header can be translated to that specified by externip or
the IP address can be looked up with externhost.

localnet=192.168.1.0/24
localnet=172.16.0.0/16

maxexpirey
This sets the maximum amount of time, in seconds, until a peer’s registration
expires.

maxexpirey=3600

notifymimetype
This takes as its argument a string specifying the MIME type used for the mes-
sage waiting notification (MWI) in the SIP NOTIFY message. The most common
setting for this field is text/plain, although it can be customized if need be.

notifymimetype=text/plain

pedantic
You can set pedantic to yes or no. Setting it to yes enables slow pedantic check-
ing for phones that require it, such as the Pingtel, and enables more strict SIP
RFC compliancy. In an effort to improve performance, SIP RFC compliance is
not normally strictly adhered to.

pedantic=yes

realm
This option sets the realm for digest authentication. Set realm to your fully quali-
fied domain name, which must be globally unique.

realm=my.hostname.tld

recordhistory
You can set recordhistory to yes or no to enable or disable SIP history recording
for all channels. (See sip history and sip no history in Appendix E.)

recordhistory=yes

relaxdtmf
You can set relaxdtmf to yes or no. Setting it to yes will relax the DTMF detec-
tion handling. Use this if Asterisk is having a difficult time determining the
DTMF on the SIP channel. Note that this may cause “talkoff,” where Asterisk
incorrectly detects DTMF when it should not.

relaxdtmf=yes

,appa.22741 Page 221 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

222 | Appendix A: VoIP Channels

srvlookup
DNS SRV records are a way of setting up a logical, resolvable address where you
can be reached. This allows calls to be forwarded to different locations without
the need to change the logical address. By using SRV records, you gain many of
the advantages of DNS, whereas disabling them removes the ability to place SIP
calls based on domain names. (Note that if multiple records are returned, Aster-
isk will use only the first.) DNS SRV record lookups are recommended. To
enable them, set srvlookup=yes in the [general] section of sip.conf.

srvlookup=yes

tos
Asterisk can set the Type of Service (TOS) bits in the IP header to help improve
performance on routers that respect TOS bits in their routing calculations. The
following values are valid:

lowdelay
Minimize delay.

throughput
Maximize throughput.

reliability
Maximize reliability.

mincost
Minimize cost.

none
No bits set.

tos=lowdelay|throughput|reliability|mincost|none

useragent
useragent takes as its argument a string specifying the value for the useragent
field in the SIP header. The default value is asterisk.

useragent=asterisk

videosupport
You can set videosupport to yes or no. Setting it to yes will enable SIP video sup-
port. Video support works only between two endpoints—Asterisk does not sup-
port video conferencing at this time.

videosupport=yes

SIP Channel Definitions
Now that we’ve covered the global SIP parameters, we will discuss the channel-spe-
cific parameters. These parameters can be defined for a user, a peer, or both (as
noted in parentheses):

,appa.22741 Page 222 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

SIP | 223

accountcode (both)
The account code can be defined on a per-user basis. If defined, this account
code will be assigned to a call record whenever no specific user account code is
set. The accountcode name configured will be used as the filename.csv in the /var/
log/asterisk/cdr-csv/ directory to store CDRs for the user/peer/friend.

accountcode=iax-username

allow and disallow (both)
Specific codecs can be allowed or disallowed, limiting codec use to those pre-
ferred by the system designer. allow and disallow can also be defined on a per-
channel basis. Keep in mind that allow statements in the [general] section will
carry over to each of the channels, unless you reset with a disallow=all. Codec
negotiation is attempted in the order in which the codecs are defined. Best prac-
tice suggests that you define disallow=all, followed by explicit allow statements
for each codec you wish to use. If nothing is defined, allow=all is assumed.

disallow=all
allow=ulaw
allow=gsm
allow=ilbc

amaflags (both)
Automatic Message Accounting (AMA) is defined in the Telcordia Family of Doc-
uments listed under FR-AMA-1. These documents specify standard mechanisms
for generation and transmission of CDRs. You can specify one of four AMA flags
(default, omit, billing, or documentation) to apply to all SIP connections.

amaflags=documentation

callerid (both)
You can set a suggested Caller ID string for a user or peer with callerid. If you
define a Caller ID field for a user, any calls that come in on that channel will
have that Caller ID assigned to them, regardless of what the far end sends to
you. If Caller ID is defined for a peer, you are requesting that the far end use that
to identify you (keep in mind, however, that you have no way to ensure that it
will do so). If you want incoming callers to be able to define their own Caller IDs
(i.e., for guests), make sure you do not set the callerid field.

callerid=John Smith <(800) 555-1234>

callgroup and pickupgroup (both)
You can use the callgroup parameter to assign a channel definition to one or more
groups, and you can use the pickupgroup option in conjunction with this parame-
ter to allow a ringing phone to be answered from another extension. The
pickupgroup option is used to control which callgroups a channel may pick up—a
channel is given authority to answer another ringing channel if it is assigned to the
same pickupgroup as the ringing channel’s callgroup. By default, remote ringing
extensions can be answered with *8 (this is configurable in the features.conf file).

callgroup=1,3-5
pickupgroup=1,3-5

,appa.22741 Page 223 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

224 | Appendix A: VoIP Channels

canreinvite (both)
The SIP protocol tries to connect endpoints directly. However, Asterisk must
remain in the transmission path between the endpoints if it is required to detect
DTMF. (For more information, see Chapter 4.)

canreinvite=no

context (both)*

A context is assigned to a channel definition to direct incoming calls into the
matching context in extensions.conf, where call handling is performed (see Chap-
ters 4 and 5). Any channel connecting to an Asterisk machine has to have a con-
text defined into which it will arrive. The context is essential for any user
channel definition—if you do not define a context, incoming calls will be
directed to the default context.

context=incoming

defaultip (peer)
The defaultip setting complements host=dynamic. If a host has not yet regis-
tered with your server, you’ll attempt to send messages to the default IP address
configured here.

defaultip=192.168.1.101

deny (both)
Specific IP addresses and ranges can be controlled with the deny option. To
restrict access from a range of IP addresses, use a subnet mask—for example,
deny=192.168.1.0/255.255.255.0. You can also deny all addresses with deny=0.0.
0.0/0.0.0.0 and then allow only certain addresses with the permit command. Be
aware of the security implications of this setting. (See also permit.)

deny=0.0.0.0/0.0.0.0

disallow (both)
See allow.

dtmfmode (both)
You can set dtmfmode to inband, rfc2833, or info. DTMF digits can be sent either
in band (as part of the audio stream), or out of band (as signaling information),
using the RFC 2833 or INFO methods. The inband method only works reliably
when using an uncompressed codec such as G.711, ulaw, or alaw. The recom-
mended method is to use rfc2833; however, some devices—such as those by
Grandstream—support the info method.

dtmfmode=rfc2833

* You should be aware of an unusual scenario that will require a context definition for a peer. If a SIP call that
originated from your system returns to your system for some reason (perhaps because a call you sent to a
remote Asterisk box has been forwarded back to you), that call will authenticate not from a user definition
(as would be expected), but rather from a peer definition. Since peers don’t normally have contexts, this will
cause such a call to arrive in the default context. While this will work, the default context shouldn’t really
be used to handle incoming calls. The solution is to define a context, on a per-peer basis, for any peers that
may return calls to you (such as in a call-forwarding situation, or if the remote end is a SIP proxy server). To
experiment with this, you can call your Free World Dialup number; the call will come right back to you.

,appa.22741 Page 224 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

SIP | 225

fromdomain (peer)
This allows you to set the domain in the From: field of the SIP header. It may be
required by some providers for authentication.

fromdomain=my.hostname.tld

fromuser (peer)
This allows you to set the username with which to authenticate. The name con-
tained within the square brackets of the channel definition is usually used, but
this can be overridden with the fromuser option. This allows a channel defini-
tion to be referenced with a name other than that used to authenticate.

fromuser=john_smith

host (peer)
This configures the host to which this peer is to connect. Use a fully qualified
domain name.

host=remote.hostname.tld

incominglimit (both)
This option limits the total number of simultaneous calls for a peer or user. It
sets the max number of simultaneous outgoing calls for a peer, or the max num-
ber of incoming calls for a user.

incominglimit=3

insecure (both)
When an INVITE is received from a remote location, Asterisk attempts to authen-
ticate the string of characters before the @ sign on the INVITE line received in the
SIP header with the name of a channel definition in sip.conf. If the remote end is
a user agent, it will authenticate based on a user definition. However, if the
remote end is a SIP proxy service, it will authenticate on the peer entry. When
calls come from a provider such as Free World Dialup, which acts as a proxy for
the true remote end who is calling you, that provider cannot authenticate the call
on behalf of the endpoint. Since it would be impractical to have an authentica-
tion configured for every FWD user, and since FWD cannot respond to a 407
Proxy Authentication Required response, there must be an alternate way to
allow calls from these callers.

If you set insecure=invite, you’ll determine which peer to match on by compar-
ing the IP address or hostname and port number to those provided in the
Contact field of the SIP header with the host and port options in sip.conf. If a
match is found, authentication will not be required on the initial INVITE, and the
call will be allowed.

If you have multiple endpoints behind a NAT device, you need to enable
insecure=port to match only against the IP address. To not require authentica-
tion on the incoming INVITE for the peer, set insecure=invite,port.

insecure=invite

,appa.22741 Page 225 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

226 | Appendix A: VoIP Channels

language (both)
This sets the language flag to whatever you define. The global default language is
English. The language that is set is sent by the channel as an information ele-
ment. It is also used by applications such as SayNumber() that have different files
for different languages. Keep in mind that languages other than English are not
explicitly installed on the system, and it is up to you to configure the system to
ensure that the language you specify is handled properly.

language=en

mailbox (peer)
If you associate a mailbox with a peer within the channel definition, voicemail
will send a message waiting indication to the nodes on the end of that channel. If
the mailbox number is in a voicemail context other than default, you can spec-
ify it as mailbox@context. To associate multiple mailboxes with a single peer, use
multiple mailbox statements.

mailbox=1000@internal

md5secret (both)
If you do not wish to have plain-text secrets in your sip.conf files, you can use
md5secret to configure the MD5 hash that can be used for authentication. To
generate the MD5 hash from the Linux console, use the following command:

echo –n "username:realm:secret" | md5sum

Be sure to use the –n flag, or echo will add a \n to the end of the string; the line
feed will then be calculated into the MD5 hash, creating the incorrect hash. The
realm, if not specified with the realm option (discussed in the list of general SIP
parameters), defaults to asterisk. If both an md5secret and a secret are speci-
fied in the same channel definition, the secret will be ignored.

md5secret=0bcbe762982374c276fb01af6d272dca

musicclass (both)
This option sets the default Music on Hold class.

musicclass=classical

nat (both)
You can set nat to yes, no, or never. If you set it to yes, Asterisk ignores the IP
address in the SIP and SDP headers and responds to the address and port in the
IP header. The never option is for devices that cannot handle rport in the SIP
header, such as the Uniden UIP200.

nat=yes

permit (both)
See deny.

pickupgroup (both)
See callgroup.

,appa.22741 Page 226 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

SIP | 227

port (peer)
You can use this to define the port on which to listen for SIP signaling, if you
want to listen on a nonstandard port. (The default port for SIP signaling is 5060.)

port=5060

progressinband (both)
You can set progressinband to yes, no, or never, to configure whether or not to
generate in-band ringing. Normally, Asterisk will send the progress of a call via a
few methods, such as 183 Session Progress, 180 Ringing, 486 Busy, and so on. If
you set progressinband=yes, Asterisk will indicate the call progress in band by
generating tones.

progressinband=yes

promiscredir (both)
You can set promiscredir to yes or no. Normally, when you perform call for-
warding on a phone, Asterisk will use the Local channel (for example, Local/
18005551212@peer). If you set promiscredir=yes, Asterisk will use the SIP chan-
nel instead, which enables you to forward the calls to remote boxes.

promiscredir=yes

Note that if Asterisk performs a redirect to itself when
promiscredir=yes, the system will receive an INVITE with the same
Caller ID and detect a loop to itself. SIP does not have the ability to
perform a hairpin call, so the channel will then be destroyed.

qualify (peer)
You can set qualify to yes, no, or a time in milliseconds. If you set qualify=yes,
NOTIFY messages will be sent periodically to the remote peers to determine
whether they are available and what the latency between replies is. A peer is
determined unreachable if no reply is received within 2,000 ms (to change this
default, instead set qualify to the number of milliseconds to wait for the reply).
Use this option in conjunction with nat=yes to keep the path through the NAT
device alive.

qualify=yes

regcontext (peer)
By specifying the context that contains the actions to perform, you can config-
ure Asterisk to perform a number of actions when a peer registers to your server.
This option works in conjunction with regexten, by specifying the extension to
execute. If no regexten is configured, the peer name is used as the extension.
Asterisk will dynamically create and destroy a NoOp at priority 1 for the exten-
sion. All actions to be performed upon registration should start at priority 2.
More than one regexten may be supplied, if separated by an &. regcontext can be
set on a per-peer basis or globally.

regcontext=peer_registrations

,appa.22741 Page 227 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

228 | Appendix A: VoIP Channels

regexten (peer)
The regexten option is used in conjunction with regcontext to specify the exten-
sion that is executed within the configured context. If regexten is not explicitly
configured, the peer name is used as the extension to match.

regexten=1000

rtpholdtimeout (peer)
This takes as its argument an integer, specified in seconds. It terminates a call if
no RTP data is received while on hold. The value of rtpholdtimeout must be
greater than that of rtptimeout. (See also rtptimeout.)

rtpholdtimeout=120

rtptimeout (peer)
This takes as its argument an integer, specified in seconds. It terminates a call if
no RTP data is received within the time specified.

rtptimeout=60

secret (both)
This sets the password to use for authentication.

secret=welcome

setvar (both)
This sets a channel variable, which will be available when a channel to the peer
or user is created and will be destroyed when the call is hung up. For example, to
set the channel variable foo with a value of bar, use setvar=foo=bar.

setvar=foo=bar

username (peer)
The username field allows you to attempt contact with a peer before it has regis-
tered with you. At registration, a SIP device tells Asterisk which SIP URI to use
to contact it. The username is used in conjunction with defaultip to create the
SIP URI in the SIP INVITE header. This might be useful following a reboot, in
order to place a call. The endpoints will not attempt to register with the server
until their registration timeouts expire, so you will not know their locations. For
non-dynamic hosts, you will require the username to be specified, as it is used to
construct the authorization username.

username=john_smith

,appa.22741 Page 228 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

229

Appendix B APPENDIX B

Application Reference

AbsoluteTimeout() Sets the maximum number of seconds a call may last

AbsoluteTimeout(length)

Sets the absolute time limit of a call to length seconds. Calls lasting longer than length
seconds will be sent to the T (absolute timeout) extension, if it exists. Otherwise, the
channel will be hung up.

If length is set to zero (0), the timeout is disabled.

Each time AbsoluteTimeout() runs, it overrides the previous timeout setting. Asterisk starts
the timeout countdown at the time the application is called, not at the time the call starts.

; limit calls to ex-girlfriend to 300 seconds
exten => 123,1,AbsoluteTimeout(300)
exten => 123,2,Dial(${EX-GIRLFRIEND})
exten => T,1,Playback(im-sorry)
exten => T,2,Playback(vm-goodbye)
exten => T,3,Hangup()

See Also

DigitTimeout(), ResponseTimeout(), the T extension

AddQueueMember() Dynamically adds queue members to the specified call queue

AddQueueMember(queuename[,interface[,penalty]])

Dynamically adds the specified interface to an existing queue named queuename, as speci-
fied in queues.conf. If specified, penalty sets the penalty for queues to use this member.
Members with a lower penalty are called before members with a higher penalty.

If interface is already a member of the queue and there exists an n+101 priority (where n is
the number of the current priority), the call will continue at that priority. Otherwise, it will
return an error.

Calling AddQueueMember() without an interface argument will use the interface that the
caller is currently using.

,appb.22933 Page 229 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

230 | Appendix B: Application Reference

; add SIP/3000 to the techsupport queue, with a penalty of 1
exten => 123,1,AddQueueMember(techsupport,SIP/3000,1)

See Also

RemoveQueueMember(), queues.conf

ADSIProg() Loads an ADSI script into an ADSI-capable phone

ADSIProg(script)

Programs an Analog Display Services Interface (ADSI) phone with the given script. If none
is specified, the default script, asterisk.adsi, is used. The path for the script is relative to the
Asterisk configuration directory (usually /etc/asterisk/). You may also provide the full path
to the script.

To get the CPE ID and other information from your ADSI-capable phone, use the
GetCPEID() application.

; program the ADSI phone with the telcordia-1.adsi script
exten => 123,1,ADSIProg(telcordia-1.adsi)

See Also

GetCPEID(), adsi.conf

AgentCallbackLogin() Enables agent login with callback

AgentCallbackLogin([AgentNo][,[options][exten]@context])

Allows a call agent identified by AgentNo to log into the call queue system, to be called back
when a call comes in for that agent.

When a call comes in for the agent, Asterisk calls the specified exten (with an optional
context).

The options argument may contain the letter s, which causes the login to be silent.

; silently log in as agent number 42, and have Asterisk
; call SIP/400 when a call comes in for this agent
exten => 123,1,AgentCallbackLogin(42,s,SIP/400)

See Also

AgentLogin()

AgentLogin() Allows a call agent to log into the system

AgentLogin([AgentNo][,options])

Logs the current caller into the call queue system as a call agent (optionally identified by
AgentNo). While logged in, the agent can receive calls and will hear a beep on the line when
a new call comes in. The agent can hang up the call by pressing the asterisk (*) key.

,appb.22933 Page 230 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

AGI() | 231

The options argument may contain the letter s, which causes the login to be silent.

; silently log in as agent number 42, as defined in agents.conf
exten => 123,1,AgentLogin(42,s)

See Also

AgentCallbackLogin()

AgentMonitorOutgoing() Records an agent’s outgoing calls

AgentMonitorOutgoing([options])

Records all outbound calls made by a call agent.

This application tries to figure out the ID of the agent who is placing outgoing call based
on a comparison of the Caller ID of the current interface and the global variable set by the
AgentCallbackLogin() application. As such, it should be used only in conjunction with
(and after!) the AgentCallbackLogin() application. It uses the monitoring functions in the
chan_agent module instead of the Monitor() application to record the calls. This means that
call recording must be configured correctly in the agents.conf file.

By default, recorded calls are saved to the /var/spool/asterisk/monitor/ directory. This may
be overridden by changing the savecallsin parameter in agents.conf.

If the Caller ID and/or agent ID are not found, this application will go to priority n+1, if it
exists (where n is the current priority).

Returns 0 unless overridden by one of the options.

The options argument may include one or more of the following:

d Make this application return -1 if there is an error condition and there is no extension
n+101.

c Change the Call Detail Record so that the source of the call is recorded as Agent/
agent_id.

n Don’t generate warnings when there is no Caller ID or if the agent ID is not known. This
option is useful if you want to have a shared context for agent and non-agent calls.

; record outbound calls for this agent, and change the CDR to reflect
; that the call is being made by an agent
exten => 123,1,AgentMonitorOutgoing(c)

See Also

AgentCallbackLogin(), agents.conf

AGI() Executes an AGI-compliant application

[E]AGI(program[,arguments])

Executes an Asterisk Gateway Interface–compliant program on the current channel. AGI
programs allow external programs (written in almost any language) to control the tele-
phony channel by playing audio, reading DTMF digits, and so on. Asterisk communicates

,appb.22933 Page 231 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

232 | Appendix B: Application Reference

with the AGI program on STDIN and STDOUT. The specified arguments are passed to the AGI
program.

The program must be set as executable in the underlying filesystem. The program path is
relative to the Asterisk AGI directory, which by default is /var/lib/asterisk/agi-bin/.

If you want to run an AGI when no channel exists (such as in an h extension), use the
DeadAGI() application instead. You may want to use the FastAGI() application if you want
to do AGI processing across the network.

If you want access to the inbound audio stream from within your AGI program, use EAGI()
instead of AGI(). Inbound audio can then be read in on file descriptor number three.

Returns -1 on hangup or if the program requested a hangup, or 0 on non-hangup exit.

; call the demo AGI program
exten => 123,1,AGI(agi-test)
exten => 123,2,EAGI(eagi-test)

See Also

DeadAGI(), FastAGI(), Chapter 9

AlarmReceiver() Provides support for receiving alarm reports from a burglar or fire alarm panel

AlarmReceiver()

Emulates an alarm receiver, and allows Asterisk to receive and decode special data from fire
and/or burglar alarm panels. At this time, only the Ademco Contact ID format is
supported.

When called, AlarmReceiver() will handshake with the alarm panel, receive events, vali-
date them, handshake them, and store them until the panel hangs up. Once the panel
hangs up, the application will run the command line specified by the eventcmd setting in
alarmreceiver.conf and pipe the events to the standard input of the application. alarmre-
ceiver.conf also contains settings for DTMF timing and for the loudness of the
acknowledgment tones.

This application is not guaranteed to be reliable, so don’t depend on it
unless you have extensively tested it. If you use this application with-
out extensive testing, you may be putting your life and property at
great risk.

This application always returns 0.

; set up Asterisk to answer a call from a supported fire alarm panel
exten => s,1,AlarmReceiver()

See Also

alarmreceiver.conf

,appb.22933 Page 232 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Authenticate() | 233

Answer() Answers a channel, if it is ringing

Answer()

Causes Asterisk to answer the channel if it is currently ringing. If the current channel is not
ringing, this application does nothing.

It is usually a good idea to use Answer() on the channel before calling any other applica-
tions, unless you have a very good reason not to. Most applications require that the
channel be answered before they are called, and may not work correctly otherwise.

Returns 0 unless it tries to answer the channel and fails.

exten => 123,1,Answer()
exten => 123,2,Wait(1)
exten => 123,3,Playback(tt-weasels)

See Also

Hangup()

AppendCDRUserField() Appends a value to the user field of the Call Detail Record

AppendCDRUserField(value)

Appends value to the user field of the Call Detail Record (CDR). The user field is often
used to store arbitrary data about the call, which may not be appropriate for any of the
other fields.

Always returns 0.

; set the user field to 'abcde'
exten => 123,1,SetCDRUserField(abcde)
; now append 'xyz'
exten => 123,1,AppendCDRUserField(xyz)

See Also

SetCDRUserField(), ForkCDR(), NoCDR(), ResetCDR()

Authenticate() Requires that the caller enter a correct password before continuing

Authenticate(password[,options])

Requires a caller to enter a given password in order to continue execution of the next priority
in the dialplan. Authenticate() gives the caller three chances to enter the password correctly.
If the password is not correctly entered after three tries, the channel is hung up.

If password begins with the / character, it is interpreted as a file that contains a list of valid
passwords (one per line). Passwords may also be stored in the Asterisk database (AstDB);
see the d option below.

A set of options may be provided, consisting of one or more of the letters in the following list.

,appb.22933 Page 233 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

234 | Appendix B: Application Reference

a Sets the CDR field named accountcode and the channel variable ACCOUNTCODE to the
password that is entered

d Interprets the path as the database key from the Asterisk database in which to find the
password, not a literal file. When using a database key, the value associated with the
key can be anything.

r Removes the database key upon successful entry (valid with d only).

Returns 0 if the user enters a valid password within three tries, or -1 otherwise (or on
hangup).

; force the caller to enter the password before continuing, and set the CDR field
; named 'accountcode' to the entered password
exten => 123,1,Answer
exten => 123,2,Authenticate(1234,a)
exten => 123,3,Playback(pin-number-accepted)
exten => 123,4,SayDigits(${ACCOUNTCODE})

See Also

VMAuthenticate(), Chapter 6

Background() Plays a file while accepting touch-tone (DTMF) digits

Background(filename1[&filename2...][,options[,language]])

Plays the specified audio file(s) while waiting for the user to begin entering an extension.
Once the user begins to enter an extension, the playback is terminated. The filename
should be specified without a file extension, as Asterisk will automatically find the file
format with the lowest translation cost.

Valid options include one of the following:

skip
Causes the playback of the message to be skipped if the channel is not in the “up”
state (i.e., hasn’t yet been answered). If skip is specified, the application will return
immediately should the channel not be off-hook.

noanswer
Does not answer the channel before playing the specified file. Without this option, the
channel will automatically be answered before the sound is played. Not all channels
support playing messages before being answered.

The language argument may be used to specify a language to use for playing the prompt, if
it differs from the current language of the channel.

Returns -1 if the channel was hung up, or if the given filename does not exist; otherwise,
returns 0.

exten => 123,1,Answer()
exten => 123,2,Background('exter-ext-of-person');

See Also

Playback(), BackgroundDetect(), the show translation command

,appb.22933 Page 234 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

CallingPres() | 235

BackgroundDetect() Plays a file in the background and detects talking

BackgroundDetect(filename[,sil[,min[,max]]])

Similar to Background(), but attempts to detect talking.

During the playback of the file, audio is monitored in the receive direction. If a period of
non-silence that is greater than min milliseconds yet less than max milliseconds and is
followed by silence for at least sil milliseconds occurs, the audio playback is aborted and
processing jumps to the talk extension, if available.

If unspecified, sil, min, and max default to 1,000 ms, 100 ms, and infinity, respectively.

Returns -1 on hangup, and 0 on successful playback completion with no exit conditions.

exten => 123,1,BackgroundDetect(tt-monkeys)
exten => 123,2,Playback(im-sorry)
exten => talk,1,Playback(yes-dear)

See Also

Playback(), Background()

Busy() Indicates a busy condition to the channel

Busy([timeout])

Requests that the channel indicate the busy condition and then waits for the user to hang
up or for the optional timeout (in seconds) to expire.

This application only signals a busy condition to the bridged channel. Each particular
channel type has its own way of communicating the busy condition to the caller. You can
use Playtones(busy) to play a busy tone to the caller.

Always returns -1.

exten => 123,1,Playback(im-sorry)
exten => 123,2,Playtones(busy)
exten => 123,3,Busy()

See Also

Congestion(), Progress(), Playtones()

CallingPres() Changes the presentation for the Caller ID

CallingPres(presentation)

Changes the presentation parameters for the Caller ID on a Q931 PRI connection. These
parameters should be set before placing an outgoing call. The argument presentation
controls two things: whether or not the person being called can view the Caller ID informa-
tion (known as presentation), and whether or not the Caller ID information has been
verified by an authoritative source (known as screening).

,appb.22933 Page 235 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

236 | Appendix B: Application Reference

This application has been replaced by the SetCallerPres() applica-
tion, which is easier to use and less dependent on the internal Zaptel
structures.

This application takes the call presentation setting and the screening setting and combines
them into one number. The values themselves are defined in the ITU Q931 standard, as
shown in Tables B-1 and B-2.

Bits 3, 4, 5, and 8 should all be set to zero (0). Please note that the bits are numbered from
most significant to least significant, like this: 87654321.

; set presentation to:
; Presentation Allowed (00000000)
; Network Provided (00000011)
; ------------------ ----------
; Result = 3 (bitwise AND) (00000011)
exten => 123,1,CallingPres(3)
exten => 123,2,Dial(Zap/g1/8885551212)

; set presentation to:
; Presentation Restricted (00100000)
; User-provided, verified, and passed (00000001)
; ------------------ ----------
; Result = 33 (bitwise AND) (00100001)
exten => 124,1,CallingPres(33)
exten => 124,2,Dial(Zap/g1/8885551213)

See Also

SetCallerPres(), SetCallerID()

Table B-1. Screening is controlled by bits 2 and 1

Bit 2 Bit 1 Explanation

0 0 Caller ID information was provided by the user, and not screened.

0 1 Caller ID information was provided by the user, and successfully verified.

1 0 Caller ID information was provided by the user, and verification failed.

1 1 Caller ID information was provided by the network.

Table B-2. Presentation is controlled by bits 7 and 6

Bit 7 Bit 6 Explanation

0 0 Presentation of the Caller ID information is allowed.

0 1 Presentation of the Caller ID information is restricted.

1 0 The number is not available due to interworking.

1 1 Reserved.

,appb.22933 Page 236 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

ChanIsAvail() | 237

ChangeMonitor() Changes the monitoring filename of a channel

ChangeMonitor(filename_base)

Changes the name of the recorded file created by monitoring a channel with the Monitor()
application. This application has no effect if the channel is not monitored. The argument
filename_base is the new filename base to use for monitoring the channel.

; start recording this channel with a basename of 'sample'
exten => 123,1,Monitor(sample)
; change the filename base to 'example'
exten => 123,2,ChangeMonitor(example)

See Also

Monitor(), StopMonitor()

ChanIsAvail() Finds out if a specified channel is currently available

ChanIsAvail(technology1/resource1[&technology2/resource2...][,option])

Checks to see if any of the requested channels are available. If none of the requested chan-
nels are available, the new priority will be n+101 (where n is the current priority), unless
that priority does not exist or an error occurs, in which case ChanIsAvail() will exit and
return -1.

If any of the requested channels are available, the next priority will be n+1 and
ChanIsAvail() will return 0.

ChanIsAvail() sets the following channel variables:

${AVAILCHAN}
The name of the available channel, including the call session number used to perform
the test.

${AVAILORIGCHAN}
The canonical channel name that was used to create the channel—that is, the channel
name without any session number.

${AVAILSTATUS}
The status code for the channel.

If the option s (which stands for “state”) is specified, Asterisk will consider the channel
unavailable whenever it is in use, even if it can take another call.

This application does not work correctly on MGCP channels.

; check both Zap/1 and Zap/2 to see if they're available
exten => 123,1,ChanIsAvail(Zap/1&Zap/2)
; if we go to priority 2, then one of the channels is available
; in priority 2, we'll dial our number on the available channel
exten => 123,2,NoOp(${AVAILORIGCHAN})

,appb.22933 Page 237 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

238 | Appendix B: Application Reference

exten => 123,3,Dial(${AVAILORIGCHAN}/5551212)
; if we go to priority 101, then neither Zap/1 nor Zap/2 is available
exten => 123,3,Playback(all-circuits-busy-now)

CheckGroup() Checks the number of channels in a particular group

CheckGroup(max[@category])

Checks to see if the total number of channels in the current channel’s group exceeds the
max argument. If the number does not exceed max, the application continues to the next
priority. If the number of channels in the group is higher than max, and priority n+101
exists (where n is the current priority), execution continues at that priority. Otherwise, the
application terminates and -1 is returned.

When the optional category argument is passed, this application checks the total number
of channels in the group category. See SetGroup() for more information about categories.

exten => 123,1,SetGroup(support)
exten => 123,2,CheckGroup(5)
; if there are less than five calls in the support group
exten => 123,3,Dial(${SUPPORT})
; if there are more than five calls in the support group
exten => 123,103,Playback(im-sorry)

See Also

SetGroup(), GetGroupCount(), GetGroupMatchCount()

Congestion() Indicates congestion on the channel

Congestion([timeout])

Requests that the channel indicate congestion and then waits for the user to hang up or for
the optional timeout (in seconds) to expire.

This application only signals congestion; it doesn’t actually play a congestion tone to the
user. You can use Playtones(congestion) to play a congestion tone to the caller.

Always returns -1.

; if the Caller ID is 555-1234, always play congestion
exten => 123,1,GotoIf($[${CALLERIDNUM} = 5551234]?5:2)
exten => 123,2,Playtones(congestion)
exten => 123,3,Congestion()
exten => 123,4,Hangup()
exten => 123,5,Dial(Zap/1)

See Also

Busy(), Progress(), Playtones()

,appb.22933 Page 238 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Cut() | 239

ControlPlayback() Plays a file, with the ability to fast forward and rewind the file

ControlPlayback(filename[,skipms[,ffchar[,rewchar[,stopchar[,pausechr]]]]])

Plays back a given filename (without the file extension), while allowing the caller to move
forward and backward through the file by pressing ffchar and rewchar. By default, you can
use * and # to rewind and fast-forward the playback of the file. If stopchar is specified, the
application will stop playback when stopchar is pressed. If the file does not exist, the appli-
cation jumps to priority n+101, if present (where n is the current priority number).

The skipms option specifies how far forward or backward to jump in the file with each
press of ffchar or rewchar.

A pausechr option may also be specified, which will pause playback of the file. Pressing
pausechr again will continue the playback of the file.

Returns -1 if the channel was hung up during playback.

; allow the caller to control the playback of this file
exten => 123,1,ControlPlayback(tt-monkeys|3000|#|*|5|0)

See Also

Playback(), Background()

Curl() Loads an external URL and assigns the result to a variable

Curl(URL[,postdata])

Downloads the given URL and assigns it to the channel variable named CURL. If specified, the
postdata argument is passed to the URL as an HTTP POST. Curl() is often used to signal
external applications of dialplan events.

Returns 0, or -1 on fatal errors.

; post the Caller ID number and unique call ID to a URL
exten => 123,1,Curl(http://localhost/test.
php,CallerID=${CALLERID}&UniqueCallID={$UNIQUEID})
; now use the NoOp() application to print the result to the Asterisk console
exten => 123,2,NoOp(${CURL})

Cut() Assigns part of one variable to another variable

Cut(newvar=varname,delimiter,fieldspec)

Cuts an existing variable named varname into several pieces, and assigns one or more of the
pieces to a new variable named newvar.

The delimiter argument is the character on which to cut varname. It defaults to -.

fieldspec is the number of the field you want to assign to newvar. Fields are counted starting
with 1. The fieldspec may be specified as a range (with -) or a group of ranges and fields
(with &). If more than one field is selected, Cut() leaves the delimiter between the fields.

,appb.22933 Page 239 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

240 | Appendix B: Application Reference

Returns 0, or -1 on hangup or error.

exten => 123,1,Set(TEST=123-456-7890)
exten => 123,2,Cut(FIRST=TEST,-,2) ; gives us 456
exten => 123,3,Cut(SECOND=TEST,,1-2) ; gives us 123-456
exten => 123,4,Cut(THIRD=TEST,-,1&3) ; gives us 123-7890

DateTime() Says the specified time in a custom format

DateTime([unixtime][,timezone[,format]])

Says the time unixtime, in the time zone specified by timezone, according to the format
specified in format.

The unixtime argument is the time, in seconds, since January 1, 1970. It may be negative
for dates before 1970. unixtime defaults to the current time.

The timezone argument specifies the time zone of the specified time. See /usr/share/
zoneinfo/ for a list of valid time zones. timezone defaults to the current time zone of the
Asterisk server.

The format argument specifies which parts of the date and time should be read. See voice-
mail.conf for formatting options. format defaults to "ABdY 'digits/at' IMp".

Returns 0, or -1 on hangup.

; today's date and time
exten => 123,1,DateTime()
; today's date
exten => 124,1,DateTime(,,BdY)
; A specified date
exten => 125,1,DateTime(871624800,,BdY)

DBdel() Deletes a key from the AstDB

DBdel(family/key)

Deletes the key specified by key from the key family named family in the AstDB.

Always returns 0.

exten => 123,1,DBput(test/name=John) ; add name to AstDB
exten => 123,2,DBget(NAME=test/name) ; retrieve name from AstDB
exten => 123,3,DBdel(test/name) ; delete from AstDB

See Also

DBdeltree(), DBput(), DBget()

DBdeltree() Deletes a family or key tree from the Asterisk database

DBdeltree(family[/keytree])

Deletes the specified family or keytree from the AstDB.

,appb.22933 Page 240 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

DeadAGI() | 241

Always returns 0.

; create a couple of entries in the AstDB
exten => 123,1,DBput(test/blue)
exten => 123,2,DBput(test/green)
; now delete the key family named test
exten => 123,3,DBdeltree(test)

See Also

DBdel(), DBput(), DBget()

DBget() Retrieves a key from the AstDB

DBget(varname=family/key)

Retrieves a key value from the Asterisk database and stores it in the variable specified by
varname. If the requested key is not found, control jumps to priority n+101 (where n is the
current priority), if it exists.

Always returns 0.

; put an entry in the AstDB
exten => 123,1,DBput(test/color=blue)
; now retrieve it and assign it to a variable
exten => 123,2,DBget(COLOR=test/color)

See Also

DBdel(), DBdeltree, DBput()

DBput() Stores a value in the AstDB

DBput(family/key=value)

Stores the given value in the corresponding family and key in the AstDB.

Always returns 0.

; put an entry in the AstDB
exten => 123,1,DBput(test/color=blue)

See Also

DBdel(), DBdeltree, DBget()

DeadAGI() Executes an AGI-compliant script on a dead (hung-up) channel

DeadAGI(program,args)

Executes an AGI-compliant program on a dead (hung-up) channel. AGI allows Asterisk to
launch external programs written in almost any language to control a telephony channel,
play audio, read DTMF digits, and so on by communicating with the AGI protocol on
STDIN and STDOUT. The arguments specified by args will be passed to the program.

,appb.22933 Page 241 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

242 | Appendix B: Application Reference

This application has been written specifically for dead channels, as the normal AGI inter-
face doesn’t work correctly if the channel has been hung up.

Use the show agi command on the command-line interface to list all of the available AGI
commands.

Returns -1 if the application requested a hangup, or 0 on a non-hangup exit.

exten => h,1,DeadAGI(agi-test)

See Also

AGI(), FastAGI()

Dial() Attempts to connect channels

Dial(tech/username:password@hostname/extension,ring-timeout,flags)

Allows you to connect together all of the various channel types.* Dial() is the most impor-
tant application in Asterisk—you’ll want to read through this section a few times.

Any valid channel type (such as SIP, IAX2, H.323, MGCP, Local, or Zap) is acceptable to
Dial(), but the parameters that need to be passed to each channel will depend on the
information the channel type needs to do its job. For example, a SIP channel will need a
network address and user to connect to, whereas a Zap channel is going to want some sort
of phone number.

When you specify a channel type that is network-based, you can pass the destination host
(name or IP address), username, password, and remote extension as part of the options to
Dial(), or you can refer to the name of a channel entry in the appropriate .conf file; all the
required information will then need to be obtained from that file. The username and pass-
word can be replaced with the name contained within square brackets ([]) of the channel
configuration file. The hostname is optional.

This is a valid Dial statement:

exten => s,1,Dial(SIP/sake:arigato@thathostoverthere.tld)

This is effectively identical:

exten => s,1,Dial(SIP/some_SIP_friend)

but will work only if there is a channel defined in sip.conf as [some_SIP_friend], whose channel
definition contains fromuser=sake, password=arigato, and host=thathostoverthere.tld.

An extension number is often attached after the address information, like this:

exten => s,1,Dial(IAX2/user:pass@otherend.com/500)

This asks the far end to connect the call to extension 500 in the context in which the
channel arrived. The extension is not required by Dial(), as the information in the remote

* The fact that Asterisk will happily connect IAX, SIP, H.323, Skinny, PRI, FX(O/S), and anything else is amaz-
ing, but possibly the most amazing of all is the Local channel. By allowing a single Dial() command to con-
nect to multiple Local channels, one Dial() event can trigger a multitude of completely independent and
unique actions in other parts of the dialplan. The power of this concept is truly revolutionary and has to be
experienced to be believed.

,appb.22933 Page 242 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Dial() | 243

end’s channel configuration file may be used, or the remote server will pass the call to the s
extension in the context in which the call came in. Ultimately, the far end controls what
happens to the call—you can only request a specific treatment.

If no ring-timeout is specified, the channel will ring indefinitely. This is not always a bad
thing, so don’t feel you need to set it—just be aware that “indefinitely” could mean a very
long time. ring-timeout is specified in seconds. The ring timeout always follows the
addressing information, like this:

exten => s,1,Dial(IAX2/user:pass@otherend.com/500,ring-timeout)

Much of the power of the Dial() application is in the flags. These are assigned following
the addressing and timeout information, like this:

exten => s,1,Dial(IAX2/user:pass@otherend.com/500,60,flags)

Here’s something important to note: if you don’t have a timeout speci-
fied, and you want to assign flags, you must still assign a spot for the
timeout. You do this by adding an extra comma in the spot where the
timeout would normally go, like this:

exten => s,1,Dial(IAX2/user:pass@otherend.com/500,,flags)

The valid flags that may be used with the Dial() application are:

d Allows the user to dial a one-digit extension while waiting for a call to be answered.
The call will then exit to that extension (either in the current context, if it exists, or in
the context specified by ${EXITCONTEXT}).

t Permits the called party to transfer a call by pressing the # key. Please note that if this
option is used, reinvites are disabled, as Asterisk needs to monitor the call to detect
when the called party presses the # key.

T Permits the caller to transfer a connected call by pressing the # key. Again, note that if
this option is used, reinvites are disabled, as Asterisk needs to monitor the call to
detect when the caller presses the # key.

w Permits the called user to start and stop recording the call audio to disk by pressing the
automon sequence (as configured in features.conf). If the variable TOUCH_MONITOR is set,
its value will be passed as the arguments to the Monitor() application when recording
is started. If it is not set, the default values of WAV||m are passed to Monitor().

W Permits the calling user to record the call audio to disk by pressing the automon
sequence (as configured in features.conf).

f Forces the Caller ID to be set as the extension of the line making or redirecting the
outgoing call. This is done because some PSTN providers will not allow the Caller ID
to be set to anything other than that which is assigned to you. For example, if you had
a PRI, you would use the f flag to override any Caller ID set locally on a SIP phone.

o Uses the Caller ID received on the inbound leg of the call for the Caller ID on the
outbound leg of the call. This is useful if you are accepting a call and then forwarding
it to another destination, but you wish to pass the Caller ID from the inbound leg of
the call instead of overwriting it with the local Caller ID settings. This is the default
behavior on Asterisk versions prior to 1.2.

,appb.22933 Page 243 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

244 | Appendix B: Application Reference

r Indicates ringing to the calling party, without passing any audio until the call is
answered. This flag is not normally required to indicate ringing, as Asterisk will signal
ringing if a channel is actually being called.

m[class]
Provides music to the calling party until the call is answered. You may also optionally
indicate the Music on Hold class.

M(x[^arg])

Executes the macro x upon the connection of a call, optionally passing arguments
delimited by ^. The macro can also set the MACRO_RESULT channel variable to one of the
following:

ABORT
Hangs up both legs of the call

CONGESTION
Acts as if the line encountered congestion

BUSY
Acts as if the line was busy (goes to n+101, where n is the current priority)

CONTINUE
Hangs up the called party and continues on in the dialplan

GOTO:<context>^<extension>^<priority>
Transfers the call to the specified destination

h Allows the called user to hang up the channel by pressing *.

H Allows the calling user to hang up the channel by pressing *.

C Resets the Call Detail Record for the call. Since the CDR time is set to when you
Answer() the call, you may wish to reset the CDR so the end user is not billed for the
time prior to the Dial() application being invoked.

P[(x)]
Sets the privacy mode, optionally specifying x as the family/key value in the local
AstDB. Useful for accepting calls based on a blacklist (explicitly denying calls from
listed numbers) or whitelist (explicitly accepting calls from listed numbers). See also
LookupBlacklist().

g Goes on in the context if the destination channel hangs up.

G(context^extension^priority)
Transfers both parties to the specified destination, if the call is answered.

A(x)
Plays an announcement to the called party; x is the filename of the sound file to play as
the announcement.

D([called][:calling])
Sends DTMF digits after the call has been answered, but before the call is bridged. The
called parameter is passed to the called party, and the calling parameter is passed to
the calling party. Either parameter may be used individually.

L(x[:y][:z])
Limits the call to x milliseconds, warning when y milliseconds are left and repeating
every z milliseconds until the limit is reached. The x parameter is required; the y and z

,appb.22933 Page 244 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Dial() | 245

parameters are optional. The following special variables may also be set to provide
additional control:

LIMIT_PLAYAUDIO_CALLER=yes|no
Specifies whether to play sounds to the caller

LIMIT_PLAYAUDIO_CALLEE=yes|no
Specifies whether to play sounds to the callee

LIMIT_TIMEOUT_FILE=filename
Specifies which file to play when time is up

LIMIT_CONNECT_FILE=filename
Specifies which file to play when call begins

LIMIT_WARNING_FILE=filename
Specifies the file to play if the argument y is defined

n Prevents jumping to priority n+101 (where n is the number of the current priority) if all
channels are deemed busy.

A call may also be parked instead of being transferred (which is done with the t or T flags).
Calls are normally parked by transferring them to extension 700, but that’s configurable in
the features.conf file.

The Dial() application sets the following variables upon exiting:

DIALEDTIME
The total time elapsed from execution of Dial() until completion.

ANSWEREDTIME
The total time elapsed during the call.

DIALSTATUS
The status of the call, set as one of the following values:

CHANUNAVAIL
The channel is unavailable.

CONGESTION
The channel returned a congestion signal, usually indicating that it was unable to
complete the connection.

NOANSWER
The channel did not answer in the time indicated by the ring-timeout option.

BUSY
The dialed channel is currently busy.

ANSWER
The channel answered the call.

CANCEL
The call was cancelled.

; dial a seven-digit number on Zap channel 4
exten => 123,1,Dial(Zap/4/2317154)

; dial the same number, but this time only have it ring for 10 seconds
; before continuing on with the dialplan

,appb.22933 Page 245 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

246 | Appendix B: Application Reference

exten => 124,1,Dial(Zap/4/2317154,10)
exten => 124,2,Playback(im-sorry)
exten => 124,3,Hangup()

; dial the same number, but this time with no timeout, and using the
; t, T, and m flags
exten => 125,1,Dial(Zap/4/2317154,,tTm)

; dial extension 500 at a remote host (over the IAX protocol), using
; the specified username and password
exten => 126,1,Dial(IAX/username:password@remotehost/500)

; dial a number, but limit the call to 5 minutes (300,000 milliseconds)
; start warning the caller 4 minutes (240,000 milliseconds) into the call,
; and repeat the warning every 30 seconds (30,000 milliseconds)
exten => 127,1,Dial(Zap/4/2317154,,L[300000:240000:30000])

DigitTimeout() Sets the maximum timeout between digits

DigitTimeout(seconds)

Sets the maximum amount of time permitted between digit presses when the caller is
entering an extension. If the time period specified by seconds elapses after the caller enters
a digit, the extension will be considered complete and will be interpreted.

Note that if a valid extension is typed in it will not have to time out to be tested, so typi-
cally at the expiration of this timeout, the extension will be considered invalid (and thus
control will be passed to the i extension, or, if it doesn’t exist, the call will be terminated).

Always returns 0.

exten => 123,1,DigitTimeout(3)
exten => 123,2,Background(enter-ext-of-person)
exten => i,1,Playaback(im-sorry)
exten => i,2,Goto(123,1)

See Also

AbsoluteTimeout()

Directory() Provides a dialable directory of extensions

Directory(vm-context[,dial-context[,options]])

Presents users with a directory of extensions from which they may select by name. The list
of names and extensions is discovered from voicemail.conf. The vm-context argument is
required; it specifies the context of voicemail.conf to use.

The dial-context argument is the context to use for dialing the users, and it defaults to vm-
context if unspecified. Currently, the only option that can be specified in the options argu-
ment is f, which causes the directory to match based on the first name in voicemail.conf
instead of the last name.

,appb.22933 Page 246 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

DISA() | 247

If the user enters 0 (zero) and there exists an extension o (the lowercase letter o) in the
current context, the call control will go to that extension. Entering * will exit similarly, but
to the a extension, much like Voicemail()’s behavior.

Returns 0 unless the user hangs up.

exten => *,1,Directory(default,incoming)
exten => #,1,Directory(default,incoming,f)

See Also

voicemail.conf

DISA() Direct Inward System Access: allows inbound callers to make outbound calls

DISA(password[,context[,callerid[,mailbox[@vmcontext]]]])
DISA(password-file[,callerid[,mailbox[@vmcontext]]])

Allows outside callers to obtain an “internal” system dial tone and to place calls from it as
if they were placing calls from within the switch. The user is given a dial tone, after which
she should enter her passcode, followed by the pound sign (#). If the passcode is correct,
the user is then given a system dial tone on which a call may be placed.

Obviously, this type of access has serious security implications, and
extreme care must be taken not to compromise the security of your
phone system.

The password argument is a numeric passcode that the user must enter to be able to make
outbound calls. Using this syntax, all callers to this extension will use the same password.
To allow users to use DISA() without a password, put the string “no-password” instead of
the password.

The context argument specifies the context in which the user will be dialing. If no context
is specified, the DISA() application defaults the context to disa.

The callerid argument specifies a new Caller ID string that will be used on the outbound call.

The mailbox argument is the mailbox number (and optional voicemail context, vmcontext)
of a voicemail box. The caller will hear a stuttered dial tone if there are any new messages
in the specified voicemail box.

Additionally, you may use an alternate syntax and pass the name of a global password file
instead of the password and context arguments. On each line, the file may contain either a
passcode, or a passcode and context, separated by a pipe character (|). If a context is not
specified, the application defaults to the context named disa.

If the user login is successful, the application parses the dialed number in the specified
context.

; allow outside callers to call 1-800 numbers, as long
; as they know the passcode. Set their Caller IDs to make
; it appear that they are dialing from within the company
[incoming]

,appb.22933 Page 247 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

248 | Appendix B: Application Reference

exten => 123,1,DISA(4569,disa,"Company ABC" <(234) 123-4567>)

[disa]
exten => _1800NXXXXXX,1,Dial(Zap/4/${EXTEN})

DumpChan() Dumps information about the calling channel to the console

DumpChan([min_verbose_level])

Displays information about the calling channel, as well as a listing of all channel variables.
If min_verbose_level is specified, output is displayed only when the verbosity level is
currently set to that number or greater.

Always returns 0.

exten => s,1,Answer()
exten => s,2,DumpChan()
exten => s,3,Background(enter-ext-of-person)

DUNDiLookup() Looks up a phone number using DUNDi

DUNDiLookup(number[,context[,options]])

Looks up the given phone number in the context specified, or in the reserved e164 context if
not specified. On completion, the variables ${DUNDTECH} and ${DUNDDEST} will contain the
appropriate technology and destination to access the number. If no answer was found, and
the priority n+101 (where n is the current priority) exists, execution will continue at that
priority.

The options argument is currently ignored.

Returns -1 if the channel is hung up during the lookup, or 0 otherwise.

; look up a number via DUNDi, and dial it
exten => 123,1,DUNDiLookup(8885551212)
exten => 123,2,Dial(${DUNDITECH}/${DUNDDEST})
; if DUNDi lookup fails, dial it on a Zap channel instead
exten => 123,102,Dial(Zap/4/1888551212)

See Also

ENUMLookup()

EAGI()
See AGI().

,appb.22933 Page 248 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

ENUMLookup() | 249

Echo() Echoes inbound audio back to the caller

Echo()

Echoes audio read from the channel back to the channel. This application is often used to
test the latency and voice quality of a VoIP link. The caller may press the # key to exit.

Returns 0 if the user exits with the # key, or -1 if the user hangs up.

exten => 123,1,Echo()
exten => 123,2,Playback(vm-goodbye)

See Also

Milliwatt()

EndWhile() Ends a while loop

EndWhile()

Returns to the previously called While() application. See While() for a complete descrip-
tion of how to use a while loop.

exten => 123,1,Set(COUNT=1)
exten => 123,2,While($[${COUNT} < 5])
exten => 123,3,SayNumber(${COUNT})
exten => 123,4,EndWhile()

See Also

While(), GotoIf()

ENUMLookup() Looks up a phone number in ENUM

ENUMLookup(number)

Looks up the telephone number specified by number via ENUM, and sets the variable ENUM
with the result. For VoIP URIs, this variable will look like TECHNOLOGY/URI.

A good SIP, H.323, IAX, or IAX2 entry will result in normal-priority handling, whereas a
good TEL entry will increase the priority by 51 (if the priority exists). If the lookup was not
successful and there exists a priority n+101 (where n is the current priority), that priority
will be taken next.

Currently, the only recognized ENUM services are SIP, H.323, IAX, IAX2, and TEL.

Returns -1 on hangup or 0 on completion, regardless of whether the lookup was successful.

; look up the phone number
exten => 123,1,ENUMLookup(8885551212)
; go to priority 2 on VoIP record
exten => 123,2,Dial(${ENUM})
; otherwise, go to priority 52 on TEL record
exten => 123,52,Dial(Zap4/${ENUM})
; otherwise, go to priority 102 because the lookup failed
exten => 123,102,Playback(im-sorry)

,appb.22933 Page 249 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

250 | Appendix B: Application Reference

See Also

DUNDiLookup()

Eval() Evaluates any Asterisk variables located within a string

Eval(newvar=string)

Processes the given string and evaluates any variables contained in the string. The resulting
value is assigned to the variable newvar.

This application is used in situations where a string is used in the dialplan, but any vari-
ables contained within it need to be evaluated first. This is often the case when the string is
retrieved from a database or other external source.

; go through some convoluted steps to create a string that contains
; the unparsed variable ${UNIQUEID}
exten => 123,1,Set(ONE=\$)
exten => 123,2,Set(TWO=$[{UNIQUEID}])
; print the values to the console, to make sure it hasn't been parsed
exten => 123,3,NoOp(${ONE}${TWO})
; now evaluate the variables in the string
exten => 123,4,Eval(TEST=${ONE}${TWO})
; print the result to the console
exten => 123,5,NoOp(${TEST})

See Also

Exec(), ExecIf()

Exec() Executes an Asterisk application dynamically

Exec(appname(arguments))

Allows an arbitrary application to be invoked even when not hard-coded into the dialplan.
Returns whatever value the Asterisk application returns, or -2 when the called application
cannot be found. The arguments are passed to the called application.

This application allows you to dynamically call applications by pulling them from a data-
base or other external source.

exten => 123,1,Set(MYAPP=SayDigits(12345))
exten => 123,2,Exec(${MYAPP})

See Also

Eval(), ExecIf()

,appb.22933 Page 250 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

FastAGI() | 251

ExecIf() Conditionally executes an Asterisk application

ExecIf(expression,application,arguments)

If expression is true, executes the given application with arguments as its arguments, and
returns the result. For more information on standard Asterisk expressions, see Chapter 6 or
the README.variables file in the doc/ subdirectory of the Asterisk source.

If expression is false, execution continues at the next priority.

exten => 123,1,ExecIf($[${CALLERIDNUM} = 101],SayDigits,12345)
exten => 123,2,SayDigits(6789)

See Also

Exec(), Eval()

FastAGI() Executes an AGI-compliant script across a network connection

FastAGI(agi://hostname[:port][/script],args)

Executes an AGI-compliant program across the network. This application is very similar to
AGI(), except that it calls a specially written FastAGI script across a network connection.
The main purposes for using FastAGI are to offload CPU-intensive AGI scripts to remote
servers and to help reduce AGI script startup times (the FastAGI program is already
running before Asterisk connects to it).

FastAGI() tries to connect directly to the running FastAGI program, which must already be
listening for connections on the specified port on the server specified by hostname. If port is
not specified, it defaults to port 4573. If script is specified, it is passed to the FastAGI
program as the agi_network_script variable. The arguments specified by args will be
passed to the program.

See agi/fastagi-test in the Asterisk source directory for a sample Fast-
AGI script. This should serve as a good roadmap for writing your own
FastAGI programs.

Returns -1 if the application requested a hangup, or 0 on a non-hangup exit.

; connect to the sample fastagi-test program, which must already be running
; on the local machine
exten => 123,1,Answer()
exten => 123,2,FastAGI(agi://localhost)

; connect to a FastAGI script on a host named "calvin" on port 8000, and pass along
; a script name of "testing", with the argument "12345"
exten => 124,1,Answer()
exten => 124,2,FastAGI(agi://calvin:8000/testing,12345)

See Also

AGI(), DeadAGI()

,appb.22933 Page 251 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

252 | Appendix B: Application Reference

Festival() Uses the Festival text-to-speech engine to read text to the caller

Festival(text[,intkeys])

Connects to the locally running Festival server, sends it the text specified by text, and plays
the resulting sound file back to the user. This application allows the caller to press a key
(specified by intkeys) to immediately stop the playback and return the value of intkeys. If
intkeys is set to any, Festival() will send control of the channel to the extension entered
by the user.

See Chapter 10 for more in-depth information on using Festival with Asterisk.

You must start the Festival server before starting Asterisk, and you must use the Answer()
application to answer the channel before calling Festival().

For more information on using Festival from within Asterisk, see the
README.festival file located in the contrib/ subdirectory of the Aster-
isk source.

exten => 123,1,Answer()
exten => 123,2,Festival('This is sample speech from Festival',#)

Flash() Flashes a Zap trunk

Flash()

Sends a flash on a Zap channel. This is only a hack for people who want to perform trans-
fers and other actions that require a flash via an AGI script. It is generally quite useless
otherwise.

Returns 0 on success or -1 if this is not a Zap trunk.

exten => 123,1,Flash()

ForkCDR() Creates an additional CDR from the current call

ForkCDR()

Creates an additional Call Detail Record for the remainder of the current call.

This application is often used in calling-card applications to distinguish the inbound call
(the original CDR) from the billable call time (the second CDR).

exten => 123,1,Answer()
exten => 123,2,ForkCDR()
exten => 123,3,Playback(tt-monkeys)
exten => 123,4,Hangup()

See Also

AppendCDRUserField(), NoCDR(), ResetCDR(), SetCDRUserField()

,appb.22933 Page 252 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

GetGroupMatchCount() | 253

GetCPEID() Gets the CPE ID from an ADSI-capable telephone

GetCPEID()

Obtains the CPE ID and other information and displays it on the Asterisk console. This
information is often needed in order to properly set up zapata.conf for on-hook operations
with ADSI-capable telephones.

Returns -1 on hangup only.

; use this extension to get the necessary information to set up ADSI
; telephones
exten => 123,1,GetCPEID()

See Also

ADSIProg(), adsi.conf, zapata.conf

GetGroupCount() Counts the number of members in a particular group

GetGroupCount([group][@category])

Counts the members in the given group (and optional category) and sets the ${GROUPCOUNT}
variable to the corresponding value. If no group is specified, the current channel’s group is
used.

Use SetGroup() to assign a call as a member of a particular group.

Always returns 0.

; say the number of callers in the tech-support group
exten => 123,1,GetGroupCount(tech-support)
exten => 123,2,SayNumber(${GROUPCOUNT})

See Also

CheckGroup(), GetGroupMatchCount(), SetGroup()

GetGroupMatchCount() Counts the number of members in all groups matching the specified pattern

GetGroupMatchCount(groupmatch[@category])

Counts the number of members in all groups matching the regular expression specified by
groupmatch. The result is stored in the ${GROUPCOUNT} variable.

Note that standard regular expressions are used in the groupmatch argument.

Always returns 0.

; get the count of members in any group that starts with tech
exten => 123,1,GetGroupMatchCount(tech.*)
exten => 123,2,SayNumber($GROUPMATCH)

See Also

CheckGroup(), GetGroupCount(), SetGroup()

,appb.22933 Page 253 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

254 | Appendix B: Application Reference

Goto() Sends the call to the specified priority, extension, and context

Goto([[context,]extension,]priority)
Goto(named_priority)

Sends control of the current channel to the specified priority, optionally setting the desti-
nation extension and context.

Optionally, you can use the application to go to the named priority specified by the named_
priority argument. Named priorities only work within the current extension.

Always returns 0, even if the given context, extension, or priority is invalid.

exten => 123,1,Answer()
exten => 123,2,Set(COUNT=1)
exten => 123,3,SayNumber(${COUNT})
exten => 123,4,Set(COUNT=$[${COUNT} + 1])
exten => 123,5,Goto(3)

; same as above, but using a named priority
exten => 124,1,Answer()
exten => 124,2,Set(COUNT=1)
exten => 124,3(repeat),SayNumber(${COUNT})
exten => 124,4,Set(COUNT=$[${COUNT} + 1])
exten => 124,5,Goto(repeat)

See Also

GotoIf(), GotoIfTime()

GotoIf() Conditionally goes to the specified priority

GotoIf(condition?label1:label2)

Sends the call to label1 if condition is true or to label2 if condition is false. Either label1 or
label2 may be omitted (in that case, we just don’t take the particular branch), but not both.

A label can be any one of the following:

• A priority, such as 10

• An extension and a priority, such as 123,10

• A context, extension, and priority, such as incoming,123,10

• A named priority within the same extension, such as passed

Each type of label is explained in the example below.

[globals]
; set TEST to something else besides 101 to see what GotoIf()
; does when the condition is false
TEST=101
;
[incoming]
; set a variable
; go to priority 10 if ${TEST} is 101, otherwise go to priority 20

,appb.22933 Page 254 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

GotoIfTime() | 255

exten => 123,1,GotoIf($[${TEST} = 101]?10:20)
exten => 123,10,Playback(the-monkeys-twice)
exten => 123,20,Playback(tt-somethingwrong)
;
; same thing as above, but this time we'll specify an extension
; and a priority for each label
exten => 124,1,GotoIf($[${TEST} = 101]?123,10:123,20)
;
; same thing as above, but these labels have a context, extension, and
; priority
exten => 125,1,GotoIf($[${TEST} = 101]?incoming,123,10:incoming,123,20)
;
; same thing as above, but this time we'll go to named priorities
exten => 126,1,GotoIf($[${TEST} = 101]?passed:failed)
exten => 126,15(passed),Playback(the-monkeys-twice)
exten => 126,25(failed),Playback(the-monkeys-twice)

See Also

Goto(), GotoIfTime()

GotoIfTime() Conditionally branches, depending on the time and day

GotoIfTime(times,days_of_week,days_of_month,months?label)

Branches to the specified extension, if the current time matches the specified time. Each of
the elements may be specified either as * (for always) or as a range.

The arguments to this application are:

times
Time ranges, in 24-hour format

days_of_week
Days of the week (mon, tue, wed, thu, fri, sat, sun)

days_of_month
Days of the month (1–31)

months
Months (jan, feb, mar, apr, etc.)

; If we're open, then go to the open context
; We're open from 9am to 6pm Monday through Friday
exten => s,1,GotoIfTime(09:00-17:59,mon-fri,*,*?open,s,1)
; We're also open from 9am to noon on Saturday
exten => s,2,GotoIfTime(09:00-11:59,sat,*,*?open,s,1)
; Otherwise, we're closed
exten => s,3,Goto(closed,s,1)

See Also

GotoIf()

,appb.22933 Page 255 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

256 | Appendix B: Application Reference

Hangup() Unconditionally hangs up the current channel

Hangup()

Unconditionally hangs up the current channel.

Always returns -1.

exten => 123,1,Answer()
exten => 123,2,Playback(im-sorry)
exten => 123,3,Hangup()

See Also

Answer()

HasNewVoicemail() Conditionally branches if there is new voicemail in the indicated voicemail box

HasNewVoicemail(vmbox[@context][:folder][,varname])

Similar to HasVoicemail(). This application branches to priority n+101 (where n is the
current priority) if there is new (unheard) voicemail in the voicemail box indicated by
vmbox. The context argument corresponds to the voicemail context, and folder corre-
sponds to a voicemail folder. If the voicemail folder is not specified, it defaults to the
INBOX folder. If the varname argument is present, HasNewVoicemail() assigns the number
of messages in the specified folder to that variable.

; check to see if there's unheard voicemail in INBOX of mailbox 123
; in the default voicemail context
exten => 123,1,Answer()
exten => 123,2,HasNewVoicemail(123@default,COUNT)
exten => 123,3,Playback(vm-youhave)
exten => 123,4,Playback(vm-no)
exten => 123,5,Playback(vm-messages)
exten => 123,103,Playback(vm-youhave)
exten => 123,104,SayNumber($COUNT)
exten => 123,105,Playback(vm-messages)

See Also

HasVoicemail(), MailboxExists()

HasVoicemail() Conditionally branches if there is voicemail in the indicated voicemail box

HasVoicemail(vmbox[@context][:folder][|varname])

Branches to priority n+101 (where n is the current priority) if there is voicemail in the voice-
mail box indicated by vmbox. The context argument corresponds to the voicemail context,
and folder corresponds to a voicemail folder. If the folder is not specified, it defaults to the
INBOX folder. If the varname argument is passed, this application assigns the number of
messages in the specified folder to that variable.

; check to see if there's any voicemail at all in INBOX of mailbox 123
; in the default voicemail context

,appb.22933 Page 256 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

LookupBlacklist() | 257

exten => 123,1,Answer()
exten => 123,2,HasVoicemail(123@default,COUNT)
exten => 123,3,Playback(vm-youhave)
exten => 123,4,Playback(vm-no)
exten => 123,5,Playback(vm-messages)
exten => 123,103,Playback(vm-youhave)
exten => 123,104,SayNumber($COUNT)
exten => 123,105,Playback(vm-messages)

See Also

HasNewVoicemail(), MailboxExists()

IAX2Provision() Provisions a calling IAXy device

IAX2Provision([template])

Provisions a calling IAXy device (assuming that the calling entity is an IAXy) with the given
template. If no template is specified, the default template is used. IAXy provisioning
templates are defined in the iaxprov.conf configuration file.

Returns -1 on error or 0 on success.

; provision IAXy devices with the default template when they dial this extension
exten => 123,1,IAX2Provision(default)

ImportVar() Sets a variable based on a channel variable from a different channel

ImportVar(newvar=channel,variable)

Sets variable newvar to variable as evaluated on the specified channel (instead of the
current channel). If newvar is prefixed with _, single inheritance is assumed. If prefixed with
_ _, infinite inheritance is assumed.

; read the Caller ID information from channel Zap/1
exten => 123,1,Answer()
exten => 123,1,ImportVar(cidinfo=Zap/1,CALLERID)

See Also

Set()

LookupBlacklist() Performs a lookup of a Caller ID name/number from the blacklist database

LookupBlacklist()

Looks up the Caller ID number on the active channel in the Asterisk database (family
blacklist). If the number is found, and if there exists a priority n+101 (where n is the priority
of the current instance), the channel will be set up to continue at that priority level. Other-
wise, the application returns 0. If no Caller ID was received on the channel, it does nothing.

,appb.22933 Page 257 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

258 | Appendix B: Application Reference

To add to the blacklist from the Asterisk CLI, type database put blacklist name/number.

; send blacklisted numbers to an endless loop
; otherwise, dial the number defined by the variable ${JOHN}
exten => s,1,Answer()
exten => s,2,LookupBlacklist()
exten => s,3,Dial(${JOHN})
exten => s,103,Playback(tt-allbusy)
exten => s,104,Wait(10)
exten => s,105,Goto(103)

LookupCIDName() Performs a lookup of a Caller ID name from the AstDB

LookupCIDName()

Uses the Caller ID number on the active channel to retrieve the Caller ID name from the
AstDB (family cidname). This application does nothing if no Caller"*ID was received on the
channel. This is useful if you do not subscribe to Caller ID name delivery, or if you want to
change the Caller ID names on some incoming calls.

Always returns 0.

; look up the Caller ID information from the AstDB, and pass it along
; to Jane's phone
exten => 123,1,Answer()
exten => 123,2,LookupCIDName()
exten => 123,3,Dial(SIP/Jane)

Macro() Calls a previously defined macro

Macro(macroname,arg1,arg2...)

Executes a macro defined in the context named macro-macroname, jumping to the s exten-
sion of that context and executing each step, then returning when the steps end.

The calling extension, context, and priority are stored in ${MACRO_EXTEN}, ${MACRO_CONTEXT},
and ${MACRO_PRIORITY}, respectively. Arguments arg1, arg2, etc. become ${ARG1}, ${ARG2},
etc. in the macro context.

Macro() returns -1 if any step in the macro returns -1, and 0 otherwise. If ${MACRO_OFFSET}
is set at termination, this application will attempt to continue at priority MACRO_OFFSET+n+1
if such a step exists, and at n+1 otherwise. (In both cases, n stands for the current priority.)

If you call the Goto() application inside of the macro, the macro will terminate and control
will go to the destination of the Goto().

; define a macro to count down from the specified value
[macro-countdown]
exten => s,1,Set(COUNT=${ARG1})
exten => s,2,While($[${COUNT} > 0])
exten => s,3,SayNumber(${COUNT})
exten => s,4,Set(COUNT=$[${COUNT} - 1])
exten => s,5,EndWhile()

,appb.22933 Page 258 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

MeetMe() | 259

; call our macro with two different values
[example]
exten => 123,1,Macro(countdown,10)
exten => 124,1,Macro(countdown,5)

See Also

Goto(), Chapter 6

MailboxExists() Conditionally branches if the specified voicemail box exists

MailboxExists(mailbox[@context])

Conditionally branches to priority n+101 (where n is the current priority) if the voicemail
box specified by the mailbox argument exists. You may pass a voicemail context if the
mailbox is not in the default voicemail context.

exten => 123,1,Answer()
exten => 123,2,MailboxExists(123@default)
exten => 123,3,Playback(im-sorry)
exten => 123,103,Voicemail(u123)

See Also

HasVoicemail(), HasNewVoicemail()

Math() Performs mathematical operations and returns the result

Math(returnvar,number1 operator number2)

Performs a floating-point calculation on number1 to number2, and assigns the result to the
variable named returnvar. Valid operators are +, -, /, *, %, <, >, >=, <=, and ==, and they
behave as their C equivalents.

Always returns 0.

; add two numbers, and say the result
exten => 123,1,Math(SUM,2+2)
exten => 123,2,SayNumber(${SUM})

; subtract two numbers, and say the difference
exten => 124,1,Math(DIFFERENCE,5-3)
exten => 124,2,SayNumber(${DIFFERENCE})

MeetMe() Puts the caller into a MeetMe conference bridge

MeetMe([confno][,[options][,pin])

Joins the caller on the current channel into the MeetMe conference specified by the confno
argument. If the conference number is omitted, the user will be prompted to enter one.

The options string may contain zero or more of the characters in the following list.

,appb.22933 Page 259 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

260 | Appendix B: Application Reference

m Sets monitor-only mode (listen only, no talking).

t Sets talk-only mode (talk only, no listening).

T Sets talker detection (sent to Manager interface and MeetMe list).

i Announces user join/leave.

p Allows user to exit the conference by pressing #.

X Allows user to exit the conference by entering a valid single-digit extension (set via the
variable ${MEETME_EXIT_CONTEXT}), or the number of an extension in the current
context if that variable is not defined.

d Dynamically adds conference.

D Dynamically adds conference, prompting for a PIN.

e Selects an empty conference.

E Selects an empty pinless conference.

v Sets video mode.

r Records conference (as ${MEETME_RECORDINGFILE} using format ${MEETME_
RECORDINGFORMAT}). The default filename is meetme-conf-rec-${CONFNO}-${UNIQUEID}
and the default format is .wav.

q Sets quiet mode (don’t play enter/leave sounds).

M Enables Music on Hold when the conference has a single caller.

x Closes the conference when the last marked user exits.

w Waits until the marked user enters the conference.

b Runs the AGI script specified in ${MEETME_AGI_BACKGROUND}. Default: conf-background.agi.
(Note: this does not work with non-Zap channels in the same conference.)

s Presents the menu (user or admin) when * is received (“send” to menu).

a Sets admin mode.

A Sets marked mode.

If the pin argument is passed, the caller must enter that pin number to successfully enter
the conference.

MeetMe() returns 0 if the caller presses # to exit (see option p); otherwise, it returns -1.

A suitable Zaptel timing interface must be installed for MeetMe con-
ferencing to work.

exten => 123,1,Answer()
; add the caller to conference number 501 with pin 1234
exten => 123,2,MeetMe(501,DpM,1234)

See Also

MeetMeAdmin(), MeetMeCount()

,appb.22933 Page 260 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

MeetMeCount() | 261

MeetMeAdmin() Performs MeetMe conference administration

MeetMeAdmin(confno,command[,pin])

Runs the specified MeetMe administration command on the specified conference. The
command may be one of the following (note that the pin argument is used only for the k
option):

K Kicks all users out of the conference

k Kicks one user (with the specified PIN as the third argument) out of the conference

e Ejects the last user that joined

L Locks the conference

l Unlocks the conference

M Mutes the conference

m Unmutes the conference

N Mutes the entire conference (except admin)

n Unmutes the entire conference (except admin)
; mute conference 501
exten => 123,1,MeetMeAdmin(501,M)

; kick user with PIN number 1234 from conference 501
exten => 124,1,MeetMeAdmin(501,k,1234)

See Also

MeetMe(), MeetMeCount()

MeetMeCount() Counts the number of participants in a MeetMe conference

MeetMeCount(confno[,variable])

Plays back the number of users in the MeetMe conference identified by confno. If a variable
is specified by the variable argument, playback will be skipped and the count will be
assigned to variable.

Returns 0 on success or -1 on a hangup.

; count the number of users in conference 501, and assign that number to ${COUNT}
exten => 123,1,MeetMeCount(501,COUNT)

See Also

MeetMe(), MeetMeAdmin()

,appb.22933 Page 261 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

262 | Appendix B: Application Reference

Milliwatt() Generates a 1,000-Hz tone

Milliwatt()

Generates a constant 1,000-Hz tone at 0 dbm (mu-law). This application is often used for
testing the audio properties of a particular channel.

; generate a milliwatt tone for testing
exten => 123,1,Milliwatt()

See Also

Echo()

Monitor() Monitors (records) the audio on the current channel

Monitor([file_format[:urlbase][,fname_base][,options]])

Starts monitoring a channel. The channel’s input and output voice packets are logged to
files until the channel hangs up or monitoring is stopped by the StopMonitor() application.

Monitor() takes the following arguments:

file_format
Specifies the file format. If not set, defaults to wav.

fname_base
 If set, changes the filename used to the one specified.

options
One of two options can be specified:

m
When the recording ends, mix the two leg files into one and delete the original leg
files. If the variable ${MONITOR_EXEC} is set, the application referenced in it will be
executed instead of soxmix, and the raw leg files will not be deleted automatically.
soxmix (or ${MONITOR_EXEC}) is handed three arguments: the two leg files and the file-
name for the target mixed file, which is the same as the leg filenames but without the
in/out designator. If ${MONITOR_EXEC_ARGS} is set, the contents will be passed on as
additional arguments to ${MONITOR_EXEC}. Both ${MONITOR_EXEC} and the m flag can be
set from the administrator interface

b
Don’t begin recording unless a call is bridged to another channel.

Returns -1 if monitor files can’t be opened or if the channel is already monitored; other-
wise, returns 0.

exten => 123,1,Answer()
; record the current channel, and mix the audio channels at the end of
; recording
exten => 123,2,Monitor(wav,monitor_test,mb)
exten => 123,3,SayDigits(12345678901234567890)
exten => 123,4,StopMonitor()

,appb.22933 Page 262 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

NBScat() | 263

See Also

ChangeMonitor(), StopMonitor()

MP3Player() Plays an MP3 file or stream

MP3Player(location)

Uses the mpg123 program to play the given location to the caller. The specified location
can be either a filename or a valid URL. The caller can exit by pressing any key.

The correct version of mpg123 must be installed for this application to
work properly. Asterisk currently works best with mpg123-0.59r.

Returns -1 on hangup; otherwise, returns 0.

exten => 123,1,Answer()
exten => 123,2,MP3Player(test.mp3)

exten => 123,1,Answer()
exten => 123,2,MP3Player(http://server.tld/test.mp3)

MusicOnHold() Plays Music on Hold indefinitely

MusicOnHold(class)

Plays hold music specified by class, as configured in musiconhold.conf. If omitted, the
default music class for the channel will be used. You can use the SetMusicOnHold() applica-
tion to set the default music class for the channel.

Returns -1 on hangup; otherwise, does not return.

; transfer telemarketers to this extension to keep them busy
exten => 123,1,Answer()
exten => 123,2,Playback(tt-allbusy)
exten => 123,3,MusicOnHold(default)

See Also

SetMusicOnHold(), WaitMusicOnHold()

NBScat() Plays an NBS local stream

NBScat()

Uses the nbscat8k program to listen to the local Network Broadcast Sound (NBS) stream.
(For more information, see the nbs module in Digium’s CVS server.) The caller can exit by
pressing any key.

,appb.22933 Page 263 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

264 | Appendix B: Application Reference

Returns -1 on hangup; otherwise, does not return.

exten => 123,1,Answer()
exten => 123,2,NBScat()

NoCDR() Disables Call Detail Records for the current call

NoCDR()

Disables CDRs for the current call.

; don't log calls to 555-1212
exten => 5551212,1,Answer()
exten => 5551212,2,NoCDR()
exten => 5551212,3,Dial(Zap/4/5551212)

See Also

AppendCDRUserField(), ForkCDR(), SetCDRUserField

NoOp() Does nothing

NoOp(text)

Does nothing—this application is simply a placeholder. As a side effect, the application
evaluates text and prints the result to the Asterisk command-line interface, which can be
useful for debugging.

You don’t have to place quotes around the text. If quotes are placed
within the brackets, they will show up on the console.

exten => 123,1,NoOp(CallerID is ${CALLERID})

Park() Parks the current call

Park(exten)

Parks the current call (typically in combination with a supervised transfer to determine the
parking space number). This application is always registered internally and does not need
to be explicitly added into the dialplan, although you should include the parkedcalls
context. Parking configuration is set in features.conf.

; park the caller in parking space 701
include => parkedcalls
exten => 123,1,Answer()
exten => 123,2,Park(701)

See Also

ParkAndAnnounce, ParkedCall()

,appb.22933 Page 264 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

PauseQueueMember() | 265

ParkAndAnnounce() Parks the current call and announces the call over the specified channel

ParkAndAnnounce(template,timeout,channel[,return_context])

Parks the current call in the parking lot and announces the call over the specified channel.
The template is a colon-separated list of files to announce; the word PARKED is replaced with
the parking space number of the call. The timeout argument is the time in seconds before
the call returns to the return_context. The channel argument is the channel to call to make
the announcement. Console/dsp calls the console. The return_context argument is a GoTo()-
style label to jump the call back into after timeout, which defaults to n+1 (where n is the
current priority) in the return_context context.

include => parkedcalls
exten => 123,1,Answer()
exten => 123,2,ParkAndAnnounce(vm-youhave:a:pbx-transfer:at:vm-extension:
PARKED,120,Console/dsp)
exten => 123,3,Playback(vm-nobodyavail)
exten => 123,4,Playback(vm-goodbye)
exten => 123,5,Hangup()

See Also

Park(), ParkedCall()

ParkedCall() Answers a parked call

ParkedCall(exten)

Connects the caller to the parked call in the parking space identified by exten. This applica-
tion is always registered internally and does not need to be explicitly added into the
dialplan, although you should include the parkedcalls context.

; pick up the call parked in parking space 701
exten => 123,1,Answer()
exten => 123,2,ParkedCall(701)

See Also

Park(), ParkAndAnnounce()

PauseQueueMember() Temporarily blocks a queue member from receiving calls

PauseQueueMember([queuename],interface)

Pauses (blocks calls for) a queue member. The specified interface will be paused in the
given queue. This prevents any calls from being sent from the queue to the interface until it
is unpaused by the UnpauseQueueMember() application or the Manager interface. If no
queuename is given, the interface is paused in every queue it is a member of. If the interface
is not in the named queue, or if no queue is given and the interface is not in any queue, it
will jump to priority n+101 (where n is the current priority), if it exists.

,appb.22933 Page 265 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

266 | Appendix B: Application Reference

Returns -1 if the interface is not found and no extension to jump to exists; otherwise,
returns 0.

exten => 123,1,PauseQueueMember(,SIP/300)
exten => 124,1,UnpauseQueueMember(,SIP/300)

See Also

UnpauseQueueMember()

Playback() Plays the specified audio file to the caller

Playback(filename[,options])

Plays back a given filename to the caller. The filename should not contain the file exten-
sion, as Asterisk will automatically choose the audio file with the lowest conversion cost.
Zero or more options may also be included. The skip option causes the playback of the
message to be skipped if the channel is not in the “up” state (i.e., it hasn’t yet been
answered). If skip is specified, the application will return immediately should the channel
not be off-hook. Otherwise, unless noanswer is specified, the channel will be answered
before the sound file is played. (Not all channels support playing messages while still on-
hook.) Returns -1 if the channel was hung up. If the file does not exist, jumps to priority
n+101 (where n is the current priority), if it exists.

exten => 123,1,Answer()
exten => 123,2,Playback(tt-weasels)

See Also

Background()

Playtones() Plays a tone list

Playtones(tonelist)

Plays a tone list. Execution immediately continues with the next step, while the tones
continue to play. The tonelist is either the tone name defined in the indications.conf
configuration file, or a specified list of frequencies and durations. See indications.conf for a
description of the specification of a tone list.

Use the StopPlaytones() application to stop the tones playing.

; play a busy signal for two seconds, and then a congestion tone for two seconds
exten => 123,1,Playtones(busy)
exten => 123,2,Wait(2)
exten => 123,3,StopPlaytones()
exten => 123,4,Playtones(congestion)
exten => 123,5,Wait(2)
exten => 123,6,StopPlaytones()
exten => 123,7,Goto(1)

See Also

StopPlaytones(), indications.conf, Busy(), Congestion(), Progress(), Ringing()

,appb.22933 Page 266 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

PrivacyManager() | 267

Prefix() Prepends the specified digits to the current extension and goes to the resulting extension

Prefix(digits)

Prefixes the current extension with the digit string specified by digits and continues
processing at the next priority for the new extension. So, for example, if priority 1 of exten-
sion 1212 is Prefix(555), 555 will be prepended to 1212 and the next step executed will be
priority 2 of extension 5551212. If you switch into an extension that has no priority n+1
(where n is the current priority), Asterisk will treat it as though the user dialed an invalid
extension.

Always returns 0.

exten => 1212,1,Prefix(555)
exten => 5551212,2,SayDigits(${EXTEN})

See Also

Suffix()

PrivacyManager() Requires a caller to enter his or her phone number, if no Caller ID information is received

PrivacyManager()

If no Caller ID is received, answers the channel and asks the caller to enter his or her phone
number. By default, the caller is given three attempts. If after three attempts the caller has
not entered at least a 10-digit phone number, and if there exists a priority n+101 (where n is
the current priority), the channel will be set up to continue at that priority level. Other-
wise, it returns 0. If Caller ID was received on the channel, PrivacyManager() does nothing..

The privacy.conf configuration file changes the functionality of the PrivacyManger() appli-
cation. It contains the following two lines:

maxretries
Specifies the maximum number of attempts the caller is allowed to input a Caller ID
number (default: 3)

minlength
Specifies the minimum allowable digits in the input Caller ID number (default: 10)

exten => 123,1,Answer()
exten => 123,2,PrivacyManager()
exten => 123,3,Dial(Zap/1)
exten => 123,103,Playback(im-sorry)
exten => 123,104,Playback(vm-goodbye)

See Also

Zapateller()

,appb.22933 Page 267 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

268 | Appendix B: Application Reference

Progress() Indicates progress

Progress()

Requests that the channel indicate that in-band progress is available to the user.

Always returns 0.

; indicate progress to the calling channel
exten => 123,1,Progress()

See Also

Busy(), Congestion(), Ringing(), Playtones()

Queue() Places the current call into the specified call queue

Queue(queuename[,options[,URL[,announceoverride[,timeout]]]])

Places an incoming call into the call queue specified by queuename, as defined in queues.conf.

The options argument may contain zero or more of the following characters:

t Allows the called user to transfer the call

T Allows the calling user to transfer the call

d Specifies a data-quality (modem) call (minimum delay)

h Allows callee to hang up by hitting *

H Allows caller to hang up by hitting *

n Disallows retries on the timeout; exits this application and goes to the next step

r Rings instead of playing MoH

In addition to being transferred, a call may be parked and then picked up by another user.

The announceoverride argument overrides the standard announcement played to queue
agents before they answer the specified call.

The optional URL will be sent to the called party if the channel supports it.

The timeout will cause the queue to fail out after a specified number of seconds, checked
between each queues.conf timeout and retry cycle.

Returns -1 if the originating channel hangs up, or if the call is bridged and either of the
parties in the bridge terminates the call. If the queue is full, does not exist, or has no
members, returns 0.

; place the caller in the techsupport queue
exten => 123,1,Answer()
exten => 123,2,Queue(techsupport,t)

,appb.22933 Page 268 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Read() | 269

Random() Conditionally branches, based upon a probability

Random([probability]:[[context,]extension,]priority)

Conditionally jumps to the specified priority (and optional extension and context), based
on the specified probability. probability should be an integer between 1 and 100. The
application will jump to the specified destination priority percent of the time.

; test your luck over and over again
exten => 123,1,Random(20:lucky,1)
exten => 123,2,Goto(unlucky,1)

exten => lucky,1,Playback(good)
exten => lucky,2,Goto(123,1)

exten => unlucky,1,Playback(bad)
exten => unlucky,2,Goto(123,1)

Read() Reads DTMF digits from the caller and assign the result to a variable

Read(variable[,filename][,maxdigits][,option][,attempts][,timeout])

Reads a #-terminated string of digits a certain number of times from the user into the given
variable.

Other arguments include:

filename
Specifies the file to play before reading digits.

maxdigits
Sets the maximum acceptable number of digits. If this argument is specified, the appli-
cation stops reading after maxdigits have been entered (without requiring the user to
press the # key). Defaults to 0– (no limit, wait for the user to press the # key). Any
value below 0 means the same. The maximum accepted value is 255.

option
Specify skip to return immediately if the line is not answered, or noanswer to read
digits even if the line is not answered.

attempts
If greater than 1, that many attempts will be made in the event that no data is entered.

timeout
If greater than 0, that value will override the default timeout.

Returns -1 on hangup or error and 0 otherwise.

; read a two-digit number and repeat it back to the caller
exten => 123,1,Read(NUMBER,,2)
exten => 123,2,SayNumber(${NUMBER})
exten => 123,3,Goto(1)

See Also

SendDTMF()

,appb.22933 Page 269 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

270 | Appendix B: Application Reference

RealTime Looks up information from the RealTime configuration handler

RealTime(family,colmatch,value[,prefix])

Uses the RealTime configuration handler system to read data into channel variables. All
unique column names (from the specified family) will be set as channel variables, with an
optional prefix to the name (e.g., a prefix of var_ would make the column name become the
variable ${var_name}).

; retrieve all columns from the sipfriends table where the name column
; matches "John", and prefix all the variables with "John_"
exten => 123,1,RealTime(sipfriends,name,John,John_)
; now, let's read the value of the column named "port"
exten => 123,2,SayNumber(${John_port})

See Also

RealTimeUpdate()

RealTimeUpdate() Updates a value via the RealTime configuration handler

RealTimeUpdate(family,colmatch,value,newcol,newval)

Uses the RealTime configuration handler system to update a value. The column newcol in
family matching column colmatch=value will be updated to newval.

; this will update the port column in the sipfriends table to a new
; value of 5061, where the name column matches "John"
exten => 123,1,RealTimeUpdate(sipfriends,name,John,port,5061)

See Also

RealTime()

Record() Records channel audio to a file

Record(filename:format,silence[,maxduration][,options]) (in Asterisk 1.0.x)
Record(filename.format,silence[,maxduration][,options]) (in Asterisk 1.2.x)

Records audio from the channel into the given filename. If the file already exists, it will be
overwritten.

Optional arguments include:

format
Specifies the format of the file type to be recorded. Valid formats include: g723, g729,
gsm, h263, ulaw, alaw, vox, wav, and WAV.

silence
Specifies the number of seconds of silence to allow before returning.

maxduration
Specifies the maximum recording duration, in seconds. If missing or 0, there is no
maximum.

,appb.22933 Page 270 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

ResetCDR() | 271

options
May contain any of the following letters:

s
Skip recording if the line is not yet answered.

n
Do not answer, but record anyway if the line is not yet answered.

a
Append the recording to the existing recording rather than replacing it.

t
Use the alternate * terminator key instead of the default #.

If the filename contains %d, these characters will be replaced with a number incremented by
one each time the file is recorded.

The user can press # to terminate the recording and continue to the next priority.

Returns -1 when the user hangs up.

; record the caller's name
exten => 123,1,Playback(pls-rcrd-name-at-tone)
exten => 123,2,Record(/tmp/name:gsm,3,30)
exten => 123,3,Playback(/tmp/name)

RemoveQueueMember() Dynamically removes queue members

RemoveQueueMember(queuename[,interface])

Dynamically removes the specified interface from the queuename call queue. If interface is
not specified, this application removes the current interface from the queue.

If the interface is not in the queue and there exists a priority n+101 (where n is the current
priority), the application will jump to that priority. Otherwise, it will return an error.

Returns -1 if there is an error.

; remove SIP/3000 from the techsupport queue
exten => 123,1,RemoveQueueMember(techsupport,SIP/3000)

See Also

AddQueueMember()

ResetCDR() Resets the Call Detail Record

ResetCDR([options])

Causes the Call Detail Record to be reset. If the w option is specified, a copy of the current
CDR will be stored before the current CDR is zeroed out.

Always returns 0.

; write a copy of the current CDR record, and then reset the CDR
exten => 123,1,Answer()
exten => 123,2,Playback(tt-monkeys)

,appb.22933 Page 271 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

272 | Appendix B: Application Reference

exten => 123,3,ResetCDR(w)
exten => 123,4,Playback(tt-monkeys)

See Also

ForkCDR(), NoCDR()

ResponseTimeout() Sets maximum timeout for awaiting response from caller

ResponseTimeout(seconds)

Sets the maximum amount of time permitted after falling through a series of priorities for a
channel in which the caller may begin typing an extension. If the caller does not type an
extension in this amount of time, control will pass to the t extension, if it exists; if not, the
call will be terminated.

Always returns 0.

; allow callers three seconds to make a choice, before sending them
; to the 't' extension
exten => s,1,Answer()
exten => s,2,ResponseTimeout(3)
exten => s,3,Background(enter-ext-of-person)

exten => t,1,Playback(im-sorry)
exten => t,1,Playback(goodbye)

See Also

AbsoluteTimeout(), DigitTimeout()

RetryDial() Attempts to place a call, and retries on failure

RetryDial(announce,sleep,loops,technology/resource[&Technology2/resource2...]
[,timeout][,options][,URL])

Attempts to place a call. If no channel can be reached, plays the file defined by announce,
waiting sleep seconds to retry the call. If the specified number of attempts matches loops,
the call will continue with the next priority in the dialplan. If loops is set to 0, the call will
retry endlessly.

While waiting, a one-digit extension may be dialed. If that extension exists in either the
context defined in ${EXITCONTEXT} (if defined) or the current one, the call will transfer to
that extension immediately.

All arguments after loops are passed directly to the Dial() application.

; attempt to dial the number three times via IAX, retrying every five seconds
exten => 123,1,RetryDial(priv-trying,5,3,IAX2/VOIP/8885551212,30)
; if the caller presses 9 while waiting, dial the number on the Zap/4 channel
exten => 9,1,RetryDial(priv-trying,5,3,Zap/4/8885551212,30)

SeeAlso
Dial()

,appb.22933 Page 272 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

SayNumber() | 273

Ringing() Indicates ringing tone

Ringing()

Requests that the channel indicate ringing tone to the user. It is up to the channel driver to
specify exactly how ringing is indicated.

Note that this application does not actually provide audio ringing to the caller. Use the
Playtones() application to do this.

Always returns 0.

; indicate that the phone is ringing, even though it isn't
exten => 123,1,Ringing()
exten => 123,2,Wait(5)
exten => 123,3,Playback(tt-somethingwrong)

See Also

Busy(), Congestion(), Progress(), Ringing(), Playtones()

SayAlpha() Spells a string

SayAlpha(string)

Spells out the passed string, using the current language setting for the channel. See the
SetLanguage() application to change the current language.

exten => 123,1,SayAlpha(ABC123XYZ)

See Also

SayDigits(), SayNumber(), SayPhonetic(), SetLanguage()

SayDigits() Says the passed digits

SayDigits(digits)

Says the passed digits, using the current language setting for the channel. See the
SetLanguage() application to change the current language.

exten => 123,1,SayDigits(1234)

See Also

SayAlpha(), SayNumber(), SayPhonetic(), SetLanguage()

SayNumber() Says the specified number

SayNumber(digits[,gender])

Says the specified number, using the current language setting for the channel. See the
SetLanguage() application to change the current language.

,appb.22933 Page 273 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

274 | Appendix B: Application Reference

Currently, syntax for the following languages is supported:

da Danish

de German

en English

es Spanish

fr French

it Italian

nl Dutch

no Norwegian

pl Polish

pt Portuguese

se Swedish

tw Taiwanese

If the current language supports different genders, you can pass the gender argument to
change the gender of the spoken number. You can use the following gender arguments:

• Use the gender arguments f for female, m for male, and n for neuter in European lan-
guages such as Portuguese, French, Spanish, and German.

• Use the gender argument c for commune and n for neuter in Nordic languages such as
Danish, Swedish, and Norwegian.

• Use the gender argument p for plural enumerations in German.

For this application to work in languages other than English, you must
have the appropriate sounds for the language you wish to use.

; say the number in English
exten => 123,1,SetLanguage(en)
exten => 123,2,SayNumber(1234)

See Also

SayAlpha(), SayDigits(), SayPhonetic(), SetLanguage()

SayPhonetic() Spells the specified string phonetically

SayPhonetic(string)

Spells the specified string using the NATO phonetic alphabet.

exten => 123,1,SayPhonetic(asterisk)

See Also

SayAlpha(), SayDigits(), SayNumber()

,appb.22933 Page 274 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

SendImage() | 275

SayUnixTime() Says the specified time in a custom format

SayUnixTime([unixtime][,[timezone][,format]])

Speaks the specified time according to the specified time zone and format. The arguments are:

unixtime
The time, in seconds, since January 1, 1970. May be negative. Defaults to now.

timezone
The time zone. See /usr/share/zoneinfo/ for a list. Defaults to the machine default.

format
The format in which the time is to be spoken. See voicemail.conf for a list of formats.
Defaults to "ABdY 'digits/at' IMp".

Returns 0, or -1 on hangup.

exten => 123,1,SayUnixTime(,,IMp)

SendDTMF() Sends arbitrary DTMF digits to the channel

SendDTMF(digits[,timeout_ms])

Sends the specified DTMF digits on a channel. Valid DTMF digits include 0-9, *, #, and A-
D. You may also use the letter w as a digit, which indicates a 500-millisecond wait. The
timeout_ms argument is the amount of time between digits, in milliseconds. If not speci-
fied, timeout_ms defaults to 250 milliseconds.

Returns 0 on success or -1 on a hangup.

exten => 123,1,SendDTMF(3212333w222w366w3212333322321,250)

See Also

Read()

SendImage() Sends an image file

SendImage(filename)

Sends an image on a channel, if image transport is supported. If the channel does not
support image transport, and there exists a priority n+101 (where n is the current priority),
execution will continue at that step. Otherwise, execution will continue at the next priority
level.

Returns 0 if the image was sent correctly or if the channel does not support image trans-
port; otherwise, returns -1.

exten => 123,1,SendImage(logo.jpg)

See Also

SendText(), SendURL()

,appb.22933 Page 275 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

276 | Appendix B: Application Reference

SendText() Sends text to the channel

SendText(text)

Sends text on a channel, if text transport is supported. If the channel does not support text
transport, and there exists a priority n+101 (where n is the current priority), execution will
continue at that step. Otherwise, execution will continue at the next priority level.

Returns 0 if the text was sent correctly or if the channel does not support text transport;
otherwise, returns -1.

exten => 123,1,SendText(Welcome to Asterisk)

See Also

SendImage(), SendURL()

SendURL() Sets a variable to the specified value

SendURL(URL[,option])

Requests that the client go to the specified URL. If the client does not support HTML
transport, and there exists a priority n+101 (where n is the number of the current priority),
execution will continue at that step. Otherwise, execution will continue at the next priority
level.

Returns 0 if the URL was sent correctly or if the channel does not support HTML trans-
port; otherwise, returns -1.

If the option wait is specified, execution will wait for an acknowledgment that the URL has
been loaded before continuing and will return -1 if the peer is unable to load the URL.

exten => 123,1,SendURL(www.asterisk.org,wait)

See Also

SendImage(), SendText()

Set() Sends

Set(n=value)

Sets the variable n to the specified value. If the variable name is prefixed with _, single
inheritance is assumed. If the variable name is prefixed with _ _, infinite inheritance is
assumed. Inheritance is used when you want the outgoing channel to inherit the variable
from the dialplan.

Variables set with this application are valid only in the current channel. Use the
SetGlobalVar() application to set global variables.

; set a variable called DIALTIME, then use it
exten => 123,1,SetVar(DIALTIME=20)
exten => 123,1,Dial(Zap/4/5551212,,${DIALTIME})

,appb.22933 Page 276 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

SetCallerID() | 277

See Also

SetGlobalVar(), README.variables

SetAccount() Sets the account code in the Call Detail Record

SetAccount(account)

Sets the account code in the Call Detail Record, for billing purposes.

Always returns 0.

; set the account code to 4321 before dialing the boss
exten => 123,1,SetAccount(4321)
exten => 123,2,Dial(${BOSS})

See Also

SetAMAFlags(), SetCDRUserField(), AppendCDRUserField()

SetAMAFlags() Sets AMA flags in the Call Detail Record

SetAMAFlags(flag)

Sets the AMA flags in the Call Detail Record for billing purposes, overriding any AMA
settings in the channel configuration files. Valid choices are default, omit, billing, and
documentation.

Always returns 0.

exten => 123,1,SetAMAFlags(billing)

See Also

SetAccount(), SetCDRUserField(), AppendCDRUserField()

SetCallerID() Sets the Caller ID for the channel

SetCallerID(clid[,a])

Sets the Caller ID on the channel to a specified value. If the a argument is passed, ANI is
also set to the specified value.

Always returns 0.

; set both the Caller ID and ANI
exten => 123,1,SetCallerID("John Q. Public <8885551212>",a)

See Also

SetCIDName(), SetCIDNum()

,appb.22933 Page 277 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

278 | Appendix B: Application Reference

SetCallerPres() Sets Caller ID presentation flags

SetCallerPres(presentation)

Sets the Caller ID presentation flags on a Q931 PRI connection.

Valid presentations are:

allowed_not_screened
Presentation Allowed, Not Screened

allowed_passed_screen
Presentation Allowed, Passed Screen

allowed_failed_screen
Presentation Allowed, Failed Screen

allowed
Presentation Allowed, Network Number

prohib_not_screened
Presentation Prohibited, Not Screened

prohib_passed_screen
Presentation Prohibited, Passed Screen

prohib_failed_screen
Presentation Prohibited, Failed Screen

prohib
Presentation Prohibited, Network Number

unavailable
Number Unavailable

Always returns 0.

exten => 123,1,SetCallerPres(allowed_not_screened)
exten => 123,2,Dial(Zap/g1/8885551212)

SeeAlso

SetCallerID()

SetCDRUserField() Sets the Call Detail Record user field

SetCDRUserField(value)

Sets the CDR user field to the specified value. The CDR user field is an extra field that you
can use for data not stored anywhere else in the record. CDR records can be used for billing
purposes or for storing other arbitrary data about a particular call.

exten => 123,1,SetCDRUserField(testing)
exten => 123,2,Playback(tt-monkeys)

See Also

AppendCDRUserField(), SetAccount(), SetAMAFlags()

,appb.22933 Page 278 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

SetGroup() | 279

SetCIDName() Sets the Caller ID name on the channel

SetCIDName(cname[,a])

Sets the Caller ID name on the current channel to cname, while preserving the original
Caller ID number. This is useful for providing additional information to the called party. If
the a option is used, ANI is also set.

Always returns 0.

exten => 123,1,SetCIDName("John Q. Public")

See Also

SetCallerID(), SetCIDNum()

SetCIDNum() Sets the Caller ID number for a channel

SetCIDNum(cnum[,a])

Sets the Caller ID number on the current channel to the number specified by cnum, while
preserving the original Caller ID name. This is useful for providing additional information
to the called party. The application sets ANI as well if the a flag is used.

Always returns 0.

exten => 123,1,SetCIDNum(8885551212)

See Also

SetCIDName(), SetCallerID()

SetGlobalVar() Sets a global variable to the specified value

SetGlobalVar(n=value)

Sets a global variable called n to the specified value. Global variables are available across
channels.

; set the NUMRINGS global variable to 3
exten => 123,1,SetGlobalVar(NUMRINGS=3)

See Also

SetVar()

SetGroup() Sets the channel group to the specified value

SetGroup(groupname[@category])

Sets the channel group to the specified groupname value. Equivalent to Set(GROUP=group).
Used in conjunction with CheckGroup() to limit the number of calls accessing a particular
resource. A group category may also be set.

,appb.22933 Page 279 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

280 | Appendix B: Application Reference

Always returns 0.

; limit the number of concurrent receptionist calls to three
exten => s,1,SetGroup(receptionist)
exten => s,2,2,CheckGroup(3)
exten => s,3,Dial(${RECEPTIONIST})
exten => s,103,VoiceMail(u${RECEPTION_VM})

See Also

CheckGroup(), GetGroupCount(), GetGroupMatchCount()

SetLanguage() Sets the channel’s language

SetLanguage(language)

Sets the channel language to language. This information is used for the syntax in genera-
tion of numbers, and to choose a natural language file when available. For example, if
language is set to fr and the file demo-congrats is requested to be played, the file fr/demo-
congrats will be played if it exists; if not, the normal demo-congrats file will be played.

Always returns 0.

exten => s,1,SetLanguage(fr)
exten => s,2,SayNumber(1234)
exten => s,3,Playback(enter-ext-of-person)

SetMusicOnHold() Sets the default Music on Hold class for the current channel

SetMusicOnHold(class)

Sets the default class for Music on Hold for the current channel. When Music on Hold is
activated, this class will be used to select which music is played. Classes are defined in the
configuration file musiconhold.conf.

exten=s,1,Answer()
exten=s,2,SetMusicOnHold(default)
exten=s,3,WaitMusicOnHold()

See Also

WaitMusicOnHold(), musiconhold.conf, MusicOnHold()

SetRDNIS() Sets the RDNIS number on the current channel

SetRDNIS(cnum)

Sets the Redirected Dial Number ID Service (RDNIS) number on a call to the value speci-
fied by cnum. RDNIS is supported only on certain PRI lines.

Always returns 0.

exten => 123,1,SetRDNIS(8885551212)
exten => 123,2,Dial(Zap/4/5551234)

,appb.22933 Page 280 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

SIPDtmfMode() | 281

SetVar() Sets a variable to the specified value

SetVar(n=value)

Sets the variable n to the specified value. If the variable name is prefixed with _, single
inheritance is assumed. If the variable name is prefixed with _ _, infinite inheritance is
assumed. Inheritance is used when you want the outgoing channel to inherit the variable
from the dialplan. Reprecated in favor of Set(), which has the same syntax.

Variables set with this application are valid only in the current channel. Use the
SetGlobalVar() application to set global variables.

; set a variable called DIALTIME, then use it
exten => 123,1,SetVar(DIALTIME=20)
exten => 123,1,Dial(Zap/4/5551212,,${DIALTIME})

See Also

SetGlobalVar(), README.variables

SIPAddHeader() Adds a SIP header to the outbound call

SIPAddHeader(Header: Content)

Adds a header to a SIP call placed with the Dial() application. A nonstandard SIP header
should begin with X-, such as X-Asterisk-Accountcode:. Use this application with care—
adding the wrong headers may cause any number of problems.

Always returns 0.

exten => 123,1,SIPAddHeader(X-Asterisk-Testing: Just testing!)
exten => 123,2,Dial(SIP/123)

See Also

SIPGetHeader()

SIPDtmfMode() Changes the DTMF method for a SIP call

SIPDtmfMode(method)

Changes the DTMF method for a SIP call. The method can be either inband, info, or
rfc2833.

exten => 123,1,SIPDtmfMode(rfc2833)
exten => 123,2,Dial(SIP/123)

See Also

Appendix A

,appb.22933 Page 281 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

282 | Appendix B: Application Reference

SIPGetHeader() Gets a SIP header from an incoming SIP call

SIPGetHeader(var=headername)

Sets a channel variable named var to the content of the headername SIP header. Skips to
priority n+101 (where n is the current priority) if the specified header does not exist.

; get the "To" header and assign it to the variable called TESTING
exten => 123,1,SIPGetHeader(TESTING=To)

See Also

SIPAddHeader()

SoftHangup() Performs a soft hangup of the requested channel

SoftHangup(technology/resource,options)

Hangs up the requested channel. Always returns 0. The options argument may contain the
letter a, which causes all channels on the specified device to be hung up. Currently, the
options argument may contain only one letter: a. Supplying the a argument causes all chan-
nels on the specified device to be hung up.

; hang up all calls using Zap/4 so we can use it
exten => 123,1,SoftHangup(Zap/4,a)
exten => 123,2,Wait(2)
exten => 123,3,Dial(Zap/4/5551212)

See Also

Hangup()

StopMonitor() Stops monitoring a channel

StopMonitor()

Stops monitoring (recording) a channel. This application has no effect if the channel is not
currently being monitored.

exten => 123,1,Answer()
exten => 123,2,Monitor(wav,monitor_test,mb)
exten => 123,3,SayDigits(12345678901234567890)
exten => 123,4,StopMonitor()

See Also
Monitor()

StopPlaytones() Stops playing a tone list

StopPlaytones()

Stops playing the currently playing tone list.

,appb.22933 Page 282 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

StripMSD() | 283

exten => 123,1,Playtones(busy)
exten => 123,2,Wait(2)
exten => 123,3,StopPlaytones()
exten => 123,4,Playtones(congestion)
exten => 123,5,Wait(2)
exten => 123,6,StopPlaytones()
exten => 123,7,Goto(1)

See Also

Playtones(), indications.conf

StripLSD() Strips the specified number of trailing (least significant) digits from the current extension

StripLSD(count)

Strips the trailing count digits from the channel’s associated extension and continues
processing at the next priority for the resulting extension. So, for example, if priority 1 of
extension 5551212 is StripLSD(4), the last 4 digits will be stripped from 5551212 and the
next step executed will be priority 2 of extension 555. If you switch into an extension that
has no priority n+1 (where n is the current priority), the PBX will treat it as though the user
dialed an invalid extension.

Always returns 0.

This application is deprecated and has been replaced with the substring expression
${EXTEN:X:Y}.

exten => 5551212,1,StripLSD(4)
exten => 555,2,SayDigits(${EXTEN})

; a better way of doing the same thing
exten => 5551234,1,SayDigits(${EXTEN::3})

See Also

StripMSD(), README.variables, variable substring syntax

StripMSD() Strips the specified number of leading (most significant) digits from the current extension

StripMSD(count)

Strips the leading count digits from the channel’s associated extension and continues
processing at the next priority for the resulting extension. So, for example, if priority 1 of
extension 5551212 is StripMSD(3), the first 3 digits will be stripped from 5551212 and the
next step executed will be priority 2 of extension 1212. If you switch into an extension that
has no priority n+1 (where n is the current priority), the PBX will treat it as though the user
dialed an invalid extension.

Always returns 0.

,appb.22933 Page 283 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

284 | Appendix B: Application Reference

This application is deprecated and has been replaced with the substring expression
${EXTEN:X:Y}.

exten => 5551212,1,StripMSD(3)
exten => 1212,2,SayDigits(${EXTEN})

; a better way of doing the same thing
exten => 5551234,1,SayDigits(${EXTEN:3})

See Also

StripLSD(), README.variables, variable substring syntax

SubString() Saves substring digits in a given variable

SubString(variable=string_of_digits,count1,count2)

Assigns the substring of string_of_digits to a given variable. The parameter count1 may be
positive or negative. If it’s positive, we skip the first count1 digits from the left. If it’s nega-
tive, we move count1 digits from the end of the string to the left. The parameter count2
indicates how many digits to take from the point that count1 placed us. If count2 is nega-
tive, that many digits are omitted from the end.

This application is deprecated. Instead, use ${EXTEN:X:Y}.

; here are some examples using SubString():
;assign the area code (3 first digits) to variable TEST
exten => 8885551212,1,SubString(TEST=8885551212,0,3)
; assign the last 7 digits to variable TEST
exten => 8885551212,1,SubString(TEST=8885551212,-7,7)
; assign all but the last 4 digits to variable TEST
exten => 8885551212,1,SubString(TEST=8885551212,0,-4)
;
; and here are the preferred alternatives:
;assign the area code (3 first digits) to variable TEST
exten => 8885551212,1,Set(TEST=${EXTEN::3})
; assign the last 7 digits to variable TEST
exten => 8885551212,1,Set(TEST=${EXTEN:-7:7})
; assign all but the last 4 digits to variable TEST
exten => 8885551212,1,Set(TEST=${EXTEN:6}

Suffix() Appends trailing digits to the current extension

Suffix(digits)

Appends the digit string specified by digits to the channel’s associated extension and
continues processing at the next priority for the new extension. So, for example, if priority
1 of extension 555 is Suffix(1212), 1212 will be appended to 555 and the next step
executed will be priority 2 of extension 5551212. If you switch into an extension that has
no priority n+1 (where n is the current priority), the PBX will treat it as though the user
dialed an invalid extension.

,appb.22933 Page 284 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

TrySystem() | 285

Always returns 0.

exten => 555,1,Suffix(1212)
exten => 5551212,2,SayDigits(${EXTEN})

See Also

Prefix()

System() Executes an operating system command

System(command)

Executes a command in the underlying operating system. If the command itself executes but
is in error, and if there exists a priority n+101 (where n is the current priority), the execu-
tion of the dialplan will continue at that priority level.

This application is very similar to the TrySystem() application, except that it will return -1
if it is unable to execute the system command, whereas the TrySystem() application will
always return 0.

exten => 123,1,System(echo hello > /tmp/hello.txt)

See Also

TrySystem()

Transfer() Transfers the caller to a remote extension

Transfer(exten)

Requests that the remote caller be transferred to the given extension. If the transfer is not
supported or successful and there exists a priority n+101 (where n is the current priority),
that priority will be taken next.

; transfer calls from extension 123 to extension 130
exten => 123,1,Transfer(130)

TrySystem() Tries to execute an operating system command

TrySystem(command)

Attempts to execute a command in the underlying operating system. If the command itself
executes but is in error, and if there exists a priority n+101 (where n is the current priority),
the execution of the dialplan will continue at that priority level.

This application is very similar to the System() application, except that it always returns 0,
whereas the System() application will return -1 if it is unable to execute the system
command.

exten => 123,1,TrySystem(echo hello > /tmp/hello.txt)

,appb.22933 Page 285 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

286 | Appendix B: Application Reference

See Also

System()

TXTCIDName() Looks up a caller’s name from a DNS TXT record

TXTCIDName(CallerID)

Looks up a caller’s name via DNS and sets the variable ${TXTCIDNAME}. TXTCIDNAME will
either be blank or return the value found in the TXT record in DNS. This application looks
up the number via the ENUM sources listed in enum.conf.

exten => 123,1,TXTCIDName(8662331454)
exten => 123,2,SayAlpha(${TXTCIDNAME})
exten => 123,3,Playback(vm-goodbye)

UnpauseQueueMember() Unpauses a queue member

UnpauseQueueMember([queuename],interface)

Unpauses (resumes calls to) a queue member. This is the counterpart to PauseQueueMember(),
and it operates exactly the same way, except it unpauses instead of pausing the given
interface.

exten => 123,1,PauseQueueMember(,SIP/300)
exten => 124,1,UnpauseQueueMember(,SIP/300)

See Also

PauseQueueMember()

UserEvent() Sends an arbitrary event to the Manager interface

UserEvent(eventname[,body])

Sends an arbitrary event to the Manager interface, with an optional body representing addi-
tional arguments. The format of the event is:

Event: UserEvent<specified event name>
Channel: <channel name>
Uniqueid: <call uniqueid>
[body]

If the body is not specified, only the Event, Channel, and Uniqueid fields will be present.

Always returns 0.

exten => 123,1,UserEvent(BossCalled,${CALLERIDNAME} has called the boss!)
exten => 123,2,Dial(${BOSS})

See Also

manager.conf, Asterisk Manager interface

,appb.22933 Page 286 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

VoiceMail() | 287

Verbose() Sends arbitrary text to verbose output

Verbose([level,]message)

Sends the specified message to verbose output. The level must be an integer value. If not
specified, level defaults to 0.

Always returns 0.

exten => 123,1,Verbose(Somebody called extension 123)
exten => 123,2,Playback(extension)
exten => 123,3,SayDigits(${EXTEN})

VMAuthenticate() Authenticates the caller from voicemail passwords

VMAuthenticate([mailbox][@context])

Behaves identically to the Authenticate() application, with the exception that the pass-
words are taken from voicemail.conf.

If mailbox is specified, only that mailbox’s password will be considered valid. If mailbox is
not specified, the channel variable ${AUTH_MAILBOX} will be set with the authenticated
mailbox.

; authenticate off of any mailbox password, and tell us the matching
; mailbox number
exten => 123,1,VMAuthenticate()
exten => 123,2,SayDigits(${AUTH_MAILBOX})

See Also

Authenticate(), voicemail.conf

VoiceMail() Leaves a voicemail message in the specified mailbox

VoiceMail([s|u|b]mailbox[@context][&mailbox[@context]][...])

Leaves voicemail for a given mailbox (must be configured in voicemail.conf).

If the mailbox is preceded by s, instructions for leaving the message will be skipped. If it is
preceded by u, the “unavailable” message (/var/lib/asterisk/sounds/vm/exten/unavail) will be
played, if it exists. If the mailbox is preceded by b, the busy message will be played (that is,
busy instead of unavail).

If the caller presses 0 (zero) during the prompt, the call jumps to the o (lower-case letter o)
extension in the current context.

If the caller presses * during the prompt, the call jumps to extension a in the current
context. This is often used to send the caller to a personal assistant.

If the requested mailbox does not exist, and there exists a priority n+101 (where n is the
current priority), that priority will be taken next.

When multiple mailboxes are specified, the unavailable or busy message will be taken from
the first mailbox specified.

,appb.22933 Page 287 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

288 | Appendix B: Application Reference

Returns -1 on error or mailbox not found, or if the user hangs up; otherwise, returns 0.

; send caller to unavailable voicemail for mailbox 123
exten => 123,1,VoiceMail(u123)

See Also

VoiceMailMain(), voicemail.conf

VoiceMailMain() Enters the voicemail system

VoiceMailMain([[s|p]mailbox][@context])

Enters the main voicemail system for the checking of voicemail. Passing the mailbox argu-
ment will stop the voicemail system from prompting the user for the mailbox number.

If the mailbox is preceded by the letter s, the password check will be skipped. If the
mailbox is preceded by the letter p, the supplied mailbox will be prepended to the user’s
entry and the resulting string will be used as the mailbox number. This is useful for virtual
hosting of voicemail boxes. If a context is specified, logins are considered in that voicemail
context only.

Returns -1 if the user hangs up; otherwise, returns 0.

; go to voicemail menu for mailbox 123 in the default voicemail context
exten => 123,1,VoiceMailMain(123@default)

See Also

VoiceMail(), voicemail.conf

Wait() Waits for a specified number of seconds

Wait(seconds)

Waits for the specified number of seconds, then returns 0. You can pass fractions of a
second (e.g., 1.5 = 1.5 seconds).

; wait 1.5 seconds before playing the prompt
exten => s,1,Answer()
exten => s,2,Wait(1.5)
exten => s,3,Background(enter-ext-of-person)

WaitExten() Waits for an extension to be entered

WaitExten([seconds])

Waits for the user to enter a new extension for the specified number of seconds, then
returns 0. You can pass fractions of a second (e.g., 1.5 = 1.5 seconds). If unspecified, the
default extension timeout will be used.

; wait 15 seconds for the user to dial an extension
exten => s,1,Answer()
exten => s,2,Playback(enter-ext-of-person)
exten => s,3,WaitExten(15)

,appb.22933 Page 288 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

While() | 289

WaitForRing() Waits the specified number of seconds for a ring

WaitForRing(timeout)

Waits at least timeout seconds after the next ring has completed.

Returns 0 on success or -1 on hangup.

; wait five seconds for a ring, and then send some DTMF digits
exten => 123,1,Answer()
exten => 123,2,WaitForRing(5)
exten => 123,3,SendDTMF(1234)

WaitForSilence() Waits for a specified amount of silence

WaitForSilence(wait[,repeat])

Waits for repeat instances of wait milliseconds of silence. If repeat is omitted, the applica-
tion waits for a single instance of wait milliseconds of silence.

; wait for three instances of 300 ms of silence
exten => 123,WaitForSilence(300,3)

WaitMusicOnHold() Waits the specified number of seconds, playing Music on Hold

WaitMusicOnHold(delay)

Plays hold music for the specified number of seconds. If no hold music is available the
delay will still occur, but with no sound.

Returns 0 when done, or -1 on hangup.

; allow caller to hear Music on Hold for five minutes
exten => 123,1,Answer()
exten => 123,2,WaitMusicOnHold(300)
exten => 123,3,Hangup()

See Also

SetMusicOnHold(), musiconhold.conf

While() Starts a while loop

While(expr)

Starts a while loop. Execution will return to this point when EndWhile() is called, until expr
is no longer true. If a condition is met causing the loop to exit, it continues on past the
EndWhile().

exten => 123,1,Set(COUNT=1)
exten => 123,2,While($[${COUNT} < 5])
exten => 123,3,SayNumber(${COUNT})
exten => 123,4,EndWhile()

,appb.22933 Page 289 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

290 | Appendix B: Application Reference

See Also

EndWhile(), GotoIf()

Zapateller() Uses a special information tone to block telemarketers

Zapateller(options)

Generates a special information tone to block telemarketers and other computer-dialed
calls from bothering you.

The options argument is a pipe-delimited list of options. The following options are
available:

answer
Causes the line to be answered before playing the tone

nocallerid
Causes Zapateller to play the tone only if no Caller ID information is available
; answer the line, and play the SIT tone if there is no Caller ID information
exten => 123,1,Zapateller(answer|nocallerid)

See Also

PrivacyManager()

ZapBarge() Barges in on (monitors) a Zap channel

ZapBarge([channel])

Barges in on a specified Zap channel, or prompts if one is not specified. The people on the
channel won’t be able to hear you and will have no indication that their call is being
monitored.

If channel is not specified, you will be prompted for the channel number. Enter 4# for Zap/4,
for example.

Returns -1 when the caller hangs up and is independent of the state of the channel being
monitored.

exten => 123,1,ZapBarge(Zap/2)
exten => 123,2,Hangup()

See Also

ZapScan()

ZapRAS() Executes the Zaptel ISDN Remote Access Server

ZapRAS(args)

Executes an ISDN RAS server using pppd on the current channel. The channel must be a
clear channel (i.e., PRI source) and a Zaptel channel to be able to use this function. (No
modem emulation is included.)

,appb.22933 Page 290 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

ZapScan() | 291

Your pppd must be patched to be Zaptel-aware. args is a pipe-delimited list of arguments.

Always returns -1.

This application is only for use on ISDN lines, and your kernel must be patched to support
ZapRAS(). You must also have ppp support in your kernel.

exten => 123,1,Answer()
exten => 123,1,ZapRas(debug|64000|noauth|netmask|255.255.255.0|10.0.0.1:10.0.0.2)

ZapScan() Scans Zap channels to monitor calls

ZapScan([group])

Allows a call center manager to monitor Zap channels in a convenient way. Use # to select
the next channel, and use * to exit. You may limit scanning to a particular channel group
by setting the group argument.

exten => 123,1,ZapScan()

See Also

ZapBarge()

,appb.22933 Page 291 Wednesday, August 31, 2005 5:00 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

292

Appendix CAPPENDIX C

AGI Reference

ANSWER
ANSWER

Answers the channel (if it is not already in an answered state).

Return values:

-1 Failure

0 Success

CHANNEL STATUS
CHANNEL STATUS [channelname]

Queries the status of the channel indicated by channelname or, if no channel is specified, the
current channel.

Return values:

0 Channel is down and available

1 Channel is down, but reserved

2 Channel is off-hook

3 Digits have been dialed

4 Line is ringing

5 Line is up

6 Line is busy

DATABASE DEL
DATABASE DEL family key

Deletes an entry from the Asterisk database for the specified family and key.

,appc.23144 Page 292 Wednesday, August 31, 2005 5:01 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

EXEC | 293

Return values:

0 Failure

1 Success

DATABASE DELTREE
DATABASE DELTREE family [keytree]

Deletes a family and/or keytree from the Asterisk database.

Return values:

0 Failure

1 Success

DATABASE GET
DATABASE GET family key

Retrieves a value from the Asterisk database for the specified family and key.

Return values:

0 Not set

1 (value)
Value is set (and is included in parentheses)

DATABASE PUT
DATABASE PUT family key value

Adds or updates an entry in the Asterisk database for the specified family and key, with the
specified value.

Return values:

0 Failure

1 Success

EXEC
EXEC application options

Executes the specified dialplan application, including options.

Return values:

-2 Failure to find the application

value
Return value of the application

,appc.23144 Page 293 Wednesday, August 31, 2005 5:01 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

294 | Appendix C: AGI Reference

GET DATA
GET DATA filename [timeout] [max_digits]

Plays the audio file specified by filename and accepts DTMF digits, up to the limit set by
max_digits. Similar to the Background() dialplan application.

Return value:

value
Digits received from the caller

GET FULL VARIABLE
GET FULL VARIABLE variablename [channelname]

If the variable indicated by variablename is set, returns its value in parentheses. This
command understands complex variable names and built-in variable names, unlike GET
VARIABLE.

Return values:

0 No channel, or variable not set

1 (value)
Value is retrieved (and is included in parentheses)

GET OPTION
GET OPTION filename escape_digits [timeout]

Behaves the same as STREAM FILE, but has a timeout option (in seconds).

Return value:

value
ASCII value of digits received, in decimal

GET VARIABLE
GET VARIABLE variablename

If the variable is set, returns its value in parentheses. This command does not understand
complex variables or built-in variables; use the GET FULL VARIABLE command if your appli-
cation requires these types of variables.

Return values:

0 No channel, or variable not set

1 (value)
Value is retrieved (and is included in parentheses)

,appc.23144 Page 294 Wednesday, August 31, 2005 5:01 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

RECORD FILE | 295

HANGUP
HANGUP [channelname]

Hangs up the specified channel or, if no channel is given, the current channel.

Return values:

-1 Specified channel does not exist

1 Hangup was successful

NOOP
NoOp [text]

Performs no operation. As a side effect, this command prints text to the Asterisk console.
Usually used for debugging purposes.

Return value:

0 No channel, or variable not set

RECEIVE CHAR
RECEIVE CHAR timeout

Receives a character of text on a channel. Specify a timeout in milliseconds as the
maximum amount of time to wait for input, or set to 0 to wait infinitely. Note that most
channels do not support the reception of text.

Return values:

-1 (hangup)
Failure or hangup

char (timeout)
Timeout

value
ASCII value of character, in decimal

RECORD FILE
RECORD FILE filename format escape_digits timeout [offset_samples] [BEEP] [s=silence]

Records the channel audio to the specified file until the reception of a defined escape (DTMF)
digit. The format argument defines the type of file to be recorded (wav, gsm, etc.). The timeout
argument is the maximum number of milliseconds the recording can last, and can be set to -1
for no timeout. The offset_samples argument is optional; if provided, it will seek to the offset
without exceeding the end of the file. The silence argument is the number of seconds of
silence allowed before the function returns despite the lack of DTMF digits or reaching the
timeout. The silence value must be preceded by s= and is also optional.

,appc.23144 Page 295 Wednesday, August 31, 2005 5:01 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

296 | Appendix C: AGI Reference

Return values:

-1 Failure

0 Successful recording

SAY ALPHA
SAY ALPHA number escape_digits

Says a given character string, returning early if any of the given DTMF digits are received
on the channel.

Return values:

-1 Error or hangup

0 Playback completed without being interrupted by an escape digit

value
ASCII value of digit (if pressed), in decimal

SAY DATE
SAY DATE date escape_digits

Says a given date, returning early if any of the given DTMF digits are received on the
channel. The date is the number of seconds elapsed since 00:00:00 on January 1, 1970,
Coordinated Universal Time (UTC).

Return values:

-1 Error or hangup

0 Playback completed without being interrupted by an escape digit

value
ASCII value of digit (if pressed), in decimal

SAY DATETIME
SAY DATETIME datetime escape_digits [format] [timezone]

Says the given datetime, returning early if any of the given DTMF digits are received on the
channel. The datetime is the number of seconds elapsed since 00:00:00 on January 1, 1970,
Coordinated Universal Time (UTC). The optional format argument is the format in which the
time should be spoken. (See voicemail.conf for a complete description of the format options.)
format defaults to "ABdY 'digits/at' IMp". Acceptable values for timezone can be found in
/usr/share/zoneinfo/. timezone defaults to the default time zone of the Asterisk server.

Return values:

-1 Error or hangup

0 Playback completed without being interrupted by an escape digit

value
ASCII value of digit (if pressed), in decimal

,appc.23144 Page 296 Wednesday, August 31, 2005 5:01 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

SAY TIME | 297

SAY DIGITS
SAY DIGITS number escape_digits

Says a given digit string, returning early if any of the given DTMF digits are received on the
channel.

Return values:

-1 Error or hangup

0 Playback completed without being interrupted by an escape digit

value
ASCII value of digit (if pressed), in decimal

SAY NUMBER
SAY NUMBER number escape_digits

Says a given number, returning early if any of the given DTMF digits are received on the
channel.

Return values:

-1 Error or hangup

0 Playback completed without being interrupted by an escape digit

value
ASCII value of digit (if pressed), in decimal

SAY PHONETIC
SAY PHONETIC string escape_digits

Says a given character string with phonetics, returning early if any of the given DTMF digits
are received on the channel.

Return values:

-1 Error or hangup

0 Playback completed without being interrupted by an escape digit

value
ASCII value of digit (if pressed), in decimal

SAY TIME
SAY TIME time escape_digits

Says the indicated time, returning early if any of the given DTMF digits are received on the
channel. The time is the number of seconds elapsed since 00:00:00 on January 1, 1970,
Coordinated Universal Time (UTC).

,appc.23144 Page 297 Wednesday, August 31, 2005 5:01 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

298 | Appendix C: AGI Reference

Return values:

-1 Error or hangup

0 Playback completed without being interrupted by an escape digit

value
ASCII value of digit (if pressed), in decimal

SEND IMAGE
SEND IMAGE image

Sends the given image on the current channel. Most channels do not support the transmis-
sion of images. Image names should not include extensions.

Return values:

-1 Error or hangup

0I Image sent, or channel does not support sending an image

SEND TEXT
SEND TEXT "text_to_send"

Sends the specified text on the current channel. Most channels do not support the trans-
mission of text. Text consisting of more than one word should be placed in quotes, since
the command accepts only a single argument.

Return values:

-1 Error or hangup

0I Text sent, or channel does not support sending text

SET AUTOHANGUP
SET AUTOHANGUP time

Causes the channel to automatically be hung up once time seconds have elapsed. Of
course, it can be hung up before then as well. Setting time to 0 will cause the autohangup
feature to be disabled on this channel.

Return value:

0 Autohangup has been set

SET CALLERID
SET CALLERID number

Changes the Caller ID of the current channel.

Return value:

1 Caller ID has been set

,appc.23144 Page 298 Wednesday, August 31, 2005 5:01 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

SET VARIABLE | 299

SET CONTEXT
SET CONTEXT context

Sets the context for continuation upon exiting the AGI application.

Return value:

0 Context has been set

SET EXTENSION
SET EXTENSION extension

Changes the extension for continuation upon exiting the AGI application.

Return value:

0 Extension has been set

SET MUSIC ON
SET MUSIC ON [on|off] [class]

Enables/disables the Music on Hold generator. If class is not specified, the default Music
on Hold class will be used.

Return value:

0 Always returns 0

SET PRIORITY
SET PRIORITY priority

Changes the priority for continuation upon exiting the AGI application. priority must be a
valid priority or label.

Return value:

0 Extension has been set

SET VARIABLE
SET VARIABLE variablename value

Sets or updates the value for the variable name specified by variablename. If the variable
does not exist, it is created.

Return value:

1 Variable has been set

,appc.23144 Page 299 Wednesday, August 31, 2005 5:01 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

300 | Appendix C: AGI Reference

STREAM FILE
STREAM FILE filename escape_digits [sample_offset]

Play the audio file indicated by filename, allowing playback to be interrupted by the digits
specified by escape_digits, if any. Use double quotes for the digits if you wish none to be
permitted. If sample_offset is provided, the audio will seek to sample_offset before play-
back starts.

Remember, the file extension must not be included in the filename.

Return values:

0 Playback completed with no digit pressed

-1 Error or hangup

value
ASCII value of digit (if pressed), in decimal

TDD MODE
TDD MODE [on|off]

Enable/disable Telecommunications Devices for the Deaf (TDD) transmission/reception on
this channel.

Return values:

0 Channel not TDD-capable

1 Success

VERBOSE
VERBOSE message level

Sends message to the console via the verbose message system. The level argument is the
minimum verbosity level at which the message will appear on the Asterisk command-line
interface.

Return value:

0 Always returns 0

WAIT FOR DIGIT
WAIT FOR DIGIT timeout

Waits up to timeout milliseconds for the channel to receive a DTMF digit. Use -1 for the
timeout value if you want the call to block indefinitely.

Return values:

-1 Error or channel failure

0 Timeout

value
ASCII value of digit (if pressed), in decimal

,appc.23144 Page 300 Wednesday, August 31, 2005 5:01 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

301

Appendix D APPENDIX D

Configuration Files

This appendix contains a reference to the configuration files not cov-
ered in the previous appendixes. If you are looking for VoIP channel
configurations, refer to Appendix A. For a dialplan reference, you’ll
want to use Appendix B.

A configuration file is required for each Asterisk module you wish to use. These .conf
files contain channel definitions, describe internal services, define the locations of
other modules, or relate to the dialplan. You do not need to configure all of them to
have a functioning system, only the ones required for your configuration. Although
Asterisk ships with samples of all of the configuration files, it is possible to start
Asterisk without any of them. This will not provide you with a working system, but
it clearly demonstrates the modularity of the platform.

If no .conf files are found, Asterisk will make some decisions with respect to mod-
ules. For example, the following steps are always taken:

• The Asterisk Event Logger is loaded, and events are logged to /var/log/asterisk/
event_log.

• Manager actions are registered.

• The PBX core is initialized.

• The RTP port range is allocated from 5,000 through 31,000.

• Several built-in applications are loaded, such as Answer(), Background(), GotoIf(),
NoOp(), and Set().

• The dynamic loader is started—this is the engine responsible for loading mod-
ules defined in modules.conf.

This appendix starts with an in-depth look at the modules.conf configuration file.
We’ll then briefly examine all the other files that you may need to configure for your
Asterisk system.

,appd.23268 Page 301 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

302 | Appendix D: Configuration Files

modules.conf
The modules.conf file controls which modules are loaded or not loaded at Asterisk
startup. This is done through the use of the load => or noload => constructs.

This file is a key component to building a secure Asterisk installation:
best practice suggests that only required modules be loaded.

The modules.conf file always starts with the [modules] header. The autoload statement
tells Asterisk whether to automatically load all modules contained within the modules
directory or to load only those modules specifically defined by load => statements. We
recommend you manually load only those modules you need, but many people find it
easier to let Asterisk attempt to autoload whatever it finds in /usr/lib/asterisk/modules.
You can then exclude certain modules with noload => statements.

Here’s a sample modules.conf file:

[modules]
autoload=no ; set this to yes and Asterisk will load any
 ; modules it finds in /usr/lib/asterisk/modules

load => res_adsi.so
load => pbx_config.so ; Requires: N/A
load => chan_iax2.so ; Requires: res_crypto.so, res_features.so
load => chan_sip.so ; Requires: res_features.so
load => codec_alaw.so ; Requires: N/A
load => codec_gsm.so ; Requires: N/A
load => codec_ulaw.so ; Requires: N/A
load => format_gsm.so ; Requires: N/A
load => app_dial.so ; Requires: res_features.so, res_musiconhold.so

Since we assume Asterisk is built on Linux, all the module names we use end in a .so
extension. However, this may not be the case if you have built Asterisk on a different
operating system.

As of this writing, there are eight module types: resources, applications, Call Detail
Record database connectors, channels, codecs, formats, pbx modules, and standalone
functions. Let’s take a look at each of them.

Resources
A resource provides a connection to a static repository of a particular type of infor-
mation, such as a unique regional requirement or a library of constant elements. This
information must be configurable for each system, but once loaded it doesn’t need to
change in the course of normal operations.

For each resource below, we have outlined the applications and features it provides
to other Asterisk modules We’ve indicated the .conf file used to define the resource,

,appd.23268 Page 302 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

modules.conf | 303

where needed; if no file is listed, then a configuration file isn’t required. The resource
modules are:

res_adsi.so
Configuration file: adsi.conf

Provides: ADSI functions to ADSIProg() and Voicemail()

res_agi.so
Provides: DeadAGI(), EAGI(), AGI()

res_crypto.so
Provides: Loads public and private keys located in /var/lib/asterisk/keys/

res_features.so
Configuration file: features.conf

Provides: ParkedCall(), Park()

res_indications.so
Configuration file: indications.conf

Provides: Playtones(), StopPlaytones()

res_monitor.so
Provides: Monitor(), StopMonitor(), ChangeMonitor(), action Monitor, action
StopMonitor, action ChangeMonitor

res_musiconhold.so
Configuration file: musiconhold.conf

Provides: MusicOnHold(), WaitMusicOnHold(), SetMusicOnHold(),
StartMusicOnHold(), StopMusicOnHold()

res_odbc.so
Configuration file: res_odbc.conf

Provides: Connectivity information to the ODBC* driver—the purpose is to store
configuration file information in a database and retrieve that information from
the database; however, a reload is required to make changes take effect

Applications
If you build an Asterisk dialplan of any size, you are going to use at least one—and
more likely dozens—of applications.† If an application is never going to be used, it is
not strictly required that it be loaded. For performance-challenged systems (or if you

* Open DataBase Connectivity (ODBC) is a standard by which access to a database can be provided.

† To be of any use, a self-contained dialplan will always require several applications. Some folks, however, use
the dialplan for no other purpose than to pass control to an external application. In this case, it would be
possible to have the dialplan use no application other than AGI(). We’re not recommending that you do this,
but again, it demonstrates Asterisk’s enormous flexibility.

,appd.23268 Page 303 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

304 | Appendix D: Configuration Files

just like to keep it lean), you may elect to load only those applications that are refer-
enced in your dialplan.

For each application module, we will define any resource requirements and name the
applications that the module provides. Unless we have stated otherwise, the applica-
tion does not require a configuration file or any other modules. The available appli-
cation modules are:

app_adsiprog.so
Requires: res_adsi.so

Provides: ADSIProg()

app_alarmreceiver.so
Provides: AlarmReceiver()

app_authenticate.so
Provides: Authenticate()

app_cdr.so
Provides: NoCDR()

app_chanisavail.so
Provides: ChanIsAvail()

app_chanspy.so
Provides: ChanSpy()

app_controlplayback.so
Provides: ControlPlayback()

app_curl.so
Provides: Curl()

app_cut.so
Provides: Cut()

app_db.so
Provides: DBget(), DBput(), DBdel(), DBdeltree()

app_dial.so
Requires: res_features.so, res_musiconhold.so

Provides: Dial(), RetryDial()

app_dictate.so
Provides: Dictate()

app_directory.so
Provides: Directory()

app_disa.so
Provides: DISA()

app_dumpchan.so
Provides: DumpChan()

,appd.23268 Page 304 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

modules.conf | 305

app_echo.so
Provides: Echo()

app_enumlookup.so
Configuration file: enum.conf

Provides: EnumLookup()

app_eval.so
Provides: Eval()

app_exec.so
Provides: Exec()

app_festival.so
Provides: Festival()

app_forkcdr.so
Provides: ForkCDR()

app_getcpeid.so
Requires: res_adsi.so

Provides: GetCPEID()

app_groupcount.so
Provides: GetGroupCount(), SetGroup(), CheckGroup(), GetGroupMatchCount()

app_hasnewvoicemail.so
Provides: HasVoicemail(), HasNewVoicemail()

app_ices.so
Provides: ICES()

app_image.so
Provides: SendImage()

app_lookupblacklist.so
Provides: LookupBlacklist()

app_lookupcidname.so
Provides: LookupCIDName()

app_macro.so
Provides: Macro(), MacroExit(), MacroIf()

app_math.so
Provides: Math()

app_md5.so
Provides: MD5(), MD5Check()

app_milliwatt.so
Provides: Milliwatt()

app_mp3.so
Provides: MP3Player()

,appd.23268 Page 305 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

306 | Appendix D: Configuration Files

app_nbscat.so
Provides: NBScat()

app_parkandannounce.so
Requires: res_features.so

Provides: ParkAndAnnounce()

app_playback.so
Provides: Playback()

app_privacy.so
Provides: PrivacyManager()

app_queue.so
Requires: res_features.so, res_monitor.so, res_musiconhold.so

Provides: Queue(), AddQueueMember(), RemoveQueueMember(), PauseQueueMember(),
UnpauseQueueMember(), action Queues, action QueueStatus, action QueueAdd, action
QueueRemove, action QueuePause

app_random.so
Provides: Random()

app_read.so
Provides: Read()

app_readfile.so
Provides: ReadFile()

app_realtime.so
Provides: RealTime(), RealTimeUpdate()

app_record.so
Provides: Record()

app_sayunixtime.so
Provides: SayUnixTime(), DateTime()

app_senddtmf.so
Provides: SendDTMF()

app_sendtext.so
Provides: SendText()

app_setcallerid.so
Provides: SetCallerPres(), SetCallerID()

app_setcdruserfield.so
Provides: SetCDRUserField(), AppendCDRUserField(), action SetCDRUserField

app_setcidname.so
Provides: SetCIDName()

app_setcidnum.so
Provides: SetCIDNum()

,appd.23268 Page 306 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

modules.conf | 307

app_setrdnis.so
Provides: SetRDNIS()

app_settransfercapability.so
Provides: SetTransferCapability()

app_sms.so
Provides: SMS()

app_softhangup.so
Provides: SoftHangup()

app_striplsd.so
Provides: StripLSD()

app_substring.so (deprecated)
Provides: SubString()

app_system.so
Provides: System(), TrySystem()

app_talkdetect.so
Provides: BackgroundDetect()

app_test.so
Provides: TestClient(), TestServer()

app_transfer.so
Provides: Transfer()

app_txtcidname.so
Configuration file: enum.conf

Provides: TXTCIDName()

app_url.so
Provides: SendURL()

app_userevent.so
Provides: UserEvent()

app_verbose.so
Provides: Verbose()

app_voicemail.so
Configuration file: voicemail.conf

Requires: res_adsi.so

Provides: VoiceMail(), VoiceMailMain(), MailboxExists(), VMAuthenticate()

app_waitforring.so
Provides: WaitForRing()

app_waitforsilence.so
Provides: WaitForSilence()

,appd.23268 Page 307 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

308 | Appendix D: Configuration Files

app_while.so
Provides: While(), ExecIf(), EndWhile()

app_zapateller.so
Provides: Zapateller()

Database-Stored Call Detail Records
Asterisk normally stores Call Detail Records (CDRs) in a Comma-Separated Values
(CSV) file.* If you want CDRs to be stored in a database, you’ll need to load the
appropriate module and define the relevant .conf file.

For each module below, we state the database type it supports, and specify the con-
figuration file, if required. The CDR database connector modules are:

cdr_csv.so
Provides: CSV CDR backend

cdr_custom.so
Configuration file: cdr_custom.conf

Provides: Customizable CSV CDR backend

cdr_manager.so
Configuration file: cdr_manager.conf

Provides: Asterisk Call Manager CDR backend

cdr_odbc.so†

Configuration file: cdr_odbc.conf

Provides: ODBC CDR backend

cdr_pgsql.so
Configuration file: cdr_pgsql.conf

Provides: PostgreSQL CDR backend

Channels
Next, let’s take a look at the channel modules. For each channel module, we identify
dependencies and list the capabilities the module provides. We show the configura-
tin file, if one is required. The available modules are:

* Information stored in a text file as Comma-Separated Values can be imported into pretty much any spread-
sheet or database (yes, even stuff from Microsoft). This makes the CSV format extremely portable.

† The cdr_odbc connector could theoretically replace all of the other database-specific connectors—however,
people may prefer to use specific connectors due to performance differences, stability issues, personal pref-
erence, backward-compatibility, and so forth. Many options are available. If you are familiar with databases,
Asterisk gives you lots of choices.

,appd.23268 Page 308 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

modules.conf | 309

chan_agent.so
Configuration file: agents.conf

Requires: res_features.so, res_monitor.so, res_musiconhold.so

Provides: channel Agent, AgentLogin(), AgentCallbackLogin(),
AgentMonitorOutgoing(), action Agents

chan_features.so
Provides: channel Feature

chan_iax2.so
Configuration file: iax.conf, iaxprov.conf

Requires: res_crypto.so, res_features.so, res_musiconhold.so

Provides: channel IAX2, IAX2Provision(), function IAXPEER, action IAXPEERS,
action IAXnetstats

chan_local.so
Provides: channel Local

chan_mgcp.so
Configuration file: mgcp.conf

Requires: res_features.so

Provides: channel MGCP

chan_modem.so
Configuration file: modem.conf

Provides: channel Modem

chan_modem_aopen.so
Requires: chan_modem.so

Provides: A/Open (Rockwell Chipset) ITU-2 VoiceModem Driver

chan_modem_bestdata.so
Requires: chan_modem.so

Provides: BestData (Conexant V.90 Chipset) VoiceModem Driver

chan_modem_i4l.so
Requires: chan_modem.so

Provides: ISDN4Linux Emulated Modem Driver

chan_oss.so
Provides: channel Console (soundcard required)

chan_phone.so
Configuration file: phone.conf

Provides: channel Phone

chan_sip.so
Configuration file: sip.conf, sip_notify.conf

Requires: res_features.so

,appd.23268 Page 309 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

310 | Appendix D: Configuration Files

Provides: channel SIP, SIPDtmfMode(), SIPAddHeader(), SIPGetHeader(), action
SIPpeers, action SIPshowpeer, function SIP_HEADER

chan_skinny.so
Configuration file: skinny.conf

Requires: res_features.so

Provides: channel Skinny

Codecs
There are several acceptable ways to pass audio information in digital form. The for-
mulas used to encode and decode (or compress and decompress) this information
are collectively referred to as codecs. Most of Asterisk’s codecs are provided free of
license requirements; however, some (such as G.729) are encumbered by patents and
thus must be licensed before they can be used.

Asterisk will load these codecs without complaint, but if you attempt to transcode a
channel using an unlicensed codec, your calls will be dropped as soon as they connect.

Here, then, are the codec modules—if there are parameters that can be defined, they
will be configurable in the codecs.conf file:

codec_a_mu.so
Provides: translator alawtoulaw, translator ulawtoalaw

codec_adpcm.so
Configuration file: codecs.conf

Provides: translator adpcmtolin, translator lintoadpcm

codec_alaw.so
Configuration file: codecs.conf

Provides: translator alawtolin, translator lintoalaw

codec_g726.so
Configuration file: codecs.conf

Provides: translator g726tolin, translator lintog726

codec_gsm.so
Configuration file: codecs.conf

Provides: translator gsmtolin, translator lintogsm

codec_ilbc.so
Configuration file: not required

Provides: translator ilbctolin, translator lintoilbc

codec_lpc10.so
Configuration file: codecs.conf

Provides: translator lpc10tolin, translator lintolpc10

,appd.23268 Page 310 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

modules.conf | 311

codec_ulaw.so
Configuration file: codecs.conf

Provides: translator ulawtolin, translator lintoulaw

Formats
Formats are essentially the same as codecs, except that they relate to handling files
instead of live media streams. If you are talking to someone, a codec (or two) will be
employed. If you are leaving a voicemail or listening to Music on Hold, a format will
be involved.

Here are the current Asterisk formats. Formats do not have associated configuration
files:

format_g723.so
Provides: format g723sf

format_g726.so
Provides: format g726-40, format g726-32, format g726-24, format g726-16

format_g729.so
Provides: format g729

format_gsm.so
Provides: format gsm

format_h263.so
Provides: format h263

format_ilbc.so
Provides: format ilbc

format_jpeg.so
Provides: format jpg

format_pcm.so
Provides: format pcm

format_pcm_alaw.so
Provides: format alaw

format_sln.so
Provides: format sln

format_vox.so
Provides: format vox

format_wav.so
Provides: format wav

format_wav_gsm.so
Provides: format wav49

,appd.23268 Page 311 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

312 | Appendix D: Configuration Files

PBX Core Modules
The PBX modules deliver the core functionality of the system. For each module, we
show the services it provides, and list the configuration file, if one is required. At mini-
mum, config, functions, and spool are required. dundi, loopback, and realtime are needed
only if you are going to make use of their capabilities. The PBX core modules are:

pbx_config.so
Configuration file: extensions.conf

Provides: Loads dialplan into memory

pbx_dundi.so
Configuration file: dundi.conf

Requires: res_crypto.so

Provides: DUNDiLookup()

pbx_functions.so
Configuration file: not required

Provides: function CDR, function CHECK_MD5, function DB, function DB_EXISTS,
function ENV, function EVAL, function EXISTS, function FIELDQTY, function GROUP_
COUNT, function GROUP_MATCH_COUNT, function GROUP, function GROUP_LIST, func-
tion IF, function ISNULL, function LANGUAGE, function LEN, function MD5, function
REGEX, function STRFTIME, function SET, function TIMEOUT

pbx_loopback.so
Provides: Loopback switch

pbx_realtime.so
Provides: Realtime switch

pbx_spool.so
Provides: Outgoing spool support

Standalone Functions
There is currently only one standalone function available. This function operates
identically to those in pbx_functions.so, but because it is standalone, it can be loaded
(or not) completely independently of the pbx functions. The function is:

func_callerid.so
Configuration file: not required

Provides: function CALLERID

,appd.23268 Page 312 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

agents.conf | 313

adsi.conf
The Analog Display Services Interface (ADSI) was designed to allow telephone com-
panies to deliver enhanced services across analog telephone circuits. In Asterisk, you
can use this file to send ADSI commands to compatible telephones. Please note that
the phone must be directly connected to a Zapata channel. ADSI messages cannot be
sent across a VoIP connection to a remote analog phone.

The res_adsi.so module is required for the Voicemail() application; however, the
adsi.conf file is not necessarily used. Detailed information about ADSI is not publicly
available, and documentation needs to be purchased from Telcordia.

adtranvofr.conf
Prior to Voice over IP, Voice over Frame Relay (VoFR) enjoyed brief fame as a means
of carrying packetized voice. Supporting VoFR through Adtran equipment is part of
the history of Asterisk.

This feature is no longer popular in the community, though, so it may be difficult to
find support for it.

agents.conf
This file allows you to create and manage agents for your call center. If you are using
the Queue() application, you may want to configure agents for the queue. The agents.
conf file is used to configure the AGENT channel driver.

The [general] section in agents.conf currently contains only one parameter. The
persistentagents=yes parameter tells Asterisk to save the status of agents who use
the callback feature of queues in the local Asterisk database. A logged-in remote
agent will then remain logged in across a reboot (unless removed from the database
through some other means).

The following parameters, which are specified in the [agents] section, are used to
define agents and the way the system interacts with them. The settings apply to all
agents, unless otherwise specified in the individual agent definitions:

ackcall
Accepts the arguments yes and no. If set to yes, requires a callback agent to
acknowledge login by pressing the # key after logging in. This works in conjunc-
tion with the AgentCallbackLogin() application.

autologoff
Accepts an argument (in seconds) defining how long an agent channel should
ring for before the agent is deemed unavailable and logged off.

,appd.23268 Page 313 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

314 | Appendix D: Configuration Files

group
Defines the groups to which an agent belongs, specified with integers. Specify
that an agent belongs to multiple groups by separating the integers with commas.

musiconhold => class
Accepts a Music on Hold class as its argument. This setting applies to all agents.

updatecdr
Accepts the arguments yes and no. Used to define whether the source channel in
the CDRs should be set to agent/agent_id to determine which agent generated
the calls.

wrapuptime
Accepts an argument (in milliseconds) specifying the amount of time to wait
after an agent has finished a call before that agent can be considered available to
answer another call.

The remaining parameters are also specified in the [agents] section, but they are glo-
bal to the chan_agent channel driver and thus cannot be defined on a per-agent basis:

createlink
Accepts the arguments yes and no. Inserts the name of the created recording in
the CDR user field.

custom_beep
Accepts a filename as its argument. Can be used to define a custom notification
tone to signal to an always-connected agent that there is an incoming call.

recordagentcalls
Accepts the arguments yes and no. Defines whether or not agent calls should be
recorded.

recordformat
Defines the format to record files in. The argument specified should be wav, gsm,
or wav49. The default recording format is wav.

savecallsin
Accepts a filesystem path as its argument. Allows you to override the default
path of /var/spool/asterisk/monitor/ with one of your choosing.

Since the storage of calls will require a large amount of hard drive
space, you will want to define a strategy to handle storing and manag-
ing these recordings.

This location should probably reside on a separate volume; one with
very high performance characteristics.

urlprefix
Accepts a string as its argument. The string can be formed as a URL and is
appended to the start of the text to be added to the name of the recording.

,appd.23268 Page 314 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

alsa.conf | 315

The final parameter is used to define agents. As in the zapata.conf file, configuration
parameters are inherited from above the agent => definition. Agents are defined with
the following format:

agent => agent_id,agent_password,name

For example, we can define agent Happy Tempura with the agent ID 1000 and pass-
word 1234, as follows.

agent => 1000,1234,Happy Tempura

Be aware that an agents.conf file is a complement to the queue configuration pro-
cess. The most critical configuration file for your queues is queues.conf. You can con-
figure a very basic queue without agents.conf.

alarmreceiver.conf

The AlarmReceiver() application is not approved by Underwriter’s
Laboratory (UL) and should not be used as the primary or sole means
of receiving alarm messages or events. This application is not guaran-
teed to be reliable, so don’t depend on it unless you have extensively
tested it. Use of this application without extensive testing may place
your life and/or property at risk.

The alarmreceiver.conf file is used by the AlarmReceiver() application, which allows
Asterisk to accept alarms using the SIA (Ademco) Contact ID protocol. When a call
is received from an alarm panel, it should be directed to a context that calls the
AlarmReceiver() application. In turn, AlarmReceiver() will read the alarmreceiver.
conf configuration file and perform the configured actions as required. All parame-
ters are specified under the [general] heading.

The sample configuration file will contain the current settings for this application
and is very well documented.

alsa.conf
The alsa.conf file is used to configure Asterisk to use the Advanced Linux Sound
Architecture (ALSA) to provide access to a sound card, if desired. You can use this
file to configure the CONSOLE channel, which is most commonly used to create an
overhead paging system (although, as with any other channel, there are all kinds of
creative ways this can be used). Keep in mind that the usefulness of the ALSA chan-
nel by itself is limited due to its lack of a user interface.*

* Yes, we are aware that the user interface to the channel interface is the Asterisk CLI; however, this is not
usable as a telephone and therefore does not meet the criteria of an interface from the perspective of a tele-
phone user.

,appd.23268 Page 315 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

316 | Appendix D: Configuration Files

asterisk.conf
The asterisk.conf file defines the locations for the configuration files, the spool direc-
tory, and the modules, as well as a location to write log files to. The default settings
are recommended unless you understand the implications of changing them. The
asterisk.conf file is generated automatically when you run the make samples com-
mand, based on information it collects about your system. It will contain a
[directories] section such as the following:

[directories]
astetcdir => /etc/asterisk
astmoddir => /usr/lib/asterisk/modules
astvarlibdir => /var/lib/asterisk
astagidir => /var/lib/asterisk/agi-bin
astspooldir => /var/spool/asterisk
astrundir => /var/run
astlogdir => /var/log/asterisk

Additionally, you can specify an [options] section, which will allow you to define
startup options (command-line switches) in the configuration file. The following
example shows the available options and the command-line switches that they effec-
tively enforce:

[options]
verbose=<value> ; starting verbosity level (-v)
debug=yes|no|<val> ; turn debugging on or off (or value in 1.2) (-d)
nofork=yes|no ; don't fork a background process (-f)
console=yes|no ; load the Asterisk console (-c)
highpriority=yes|no ; run with high priority (-p)
initcrypto=yes|no ; initialize crypto at start (-i)
nocolor=yes|no ; disable ANSI colors on the console (-n)
dumpcore=yes|no ; dump a core file on failure (-g)
quiet=yes|no ; run quietly (-q)
cache_record_files=yes|no ; cache files recorded with Record() in an alternative
 ; directory in conjunction with record_cache_dir
record_cache_dir=<dir> ; directory in which to cache files recorded with
 ; Record () until completion
execincludes=yes|no ; enable support of #exec includes in configuration
 ; files (off by default)

cdr.conf
The cdr.conf file is used to enable call detail record logging to a database. Storing call
records is useful for all sorts of purposes, including billing, fraud prevention, QoS
evaluations, and more. cdr.conf contains some general parameters that are not spe-
cific to any particular database, but rather indicate how Asterisk should handle the
passing of information to the database. All options are under the [general] heading
of the cdr.conf file:

,appd.23268 Page 316 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

cdr_manager.conf | 317

batch
Accepts the arguments yes and no. Allows Asterisk to write data to a buffer instead
of writing to the database at the end of every call, to reduce load on the system.

Note that if the system dies unexpectedly when this option is set to
yes, data loss may occur.

enable
Accepts the arguments yes and no. Specifies whether or not to use CDR logging. If
set to no, this will override any CDR module explicitly loaded. The default is yes.

safeshutdown
Accepts the arguments yes and no. Setting safeshutdown to yes will prevent
Asterisk from shutting down completely until the buffer is flushed and all infor-
mation is written to the database. If this parameter is set to no and you shut
down Asterisk with information still residing in the buffers, that information will
likely be lost.

scheduleronly
Accepts the arguments yes and no. If you are generating a massive volume of
CDRs on a system that is pushing them to a remote database, setting
scheduleronly to yes may be of benefit. Since the scheduler cannot start a new
task until the current one is finished, slow CDR writes may adversely affect other
processes needing the scheduler. This setting will instruct Asterisk to handle
CDR writes in a new thread, essentially assigning a dedicated scheduler to this
function. In normal operation, this would yield very little benefit.

size
Accepts an integer as its argument. Defines the number of CDRs to accumulate
in the buffer before writing to the database. The default is 100.

time
Accepts an integer (in seconds) as its argument. Sets the number of seconds
before Asterisk flushes the buffer and writes the CDRs to the database, regard-
less of the number of records in the buffer (as defined by size). The default is
300 seconds (5 minutes).

cdr_manager.conf
The cdr_manager.conf file simply contains a [general] heading and a single option,
enabled, which you can use to specify whether or not the Asterisk Manager API gen-
erates CDR events. If you want CDR events to be generated, you will need the fol-
lowing lines in your cdr_manager.conf file:

[general]
enabled=yes

,appd.23268 Page 317 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

318 | Appendix D: Configuration Files

The Manager API will then output CDR events containing the following fields:

Event: Cdr
AccountCode:
Source:
Destination:
DestinationContext:
CallerID:
Channel:
DestinationChannel:
LastApplication:
LastData:
StartTime:
AnswerTime:
EndTime:
Duration:
BillableSeconds:
Disposition:
AMAFlags:
UniqueID:
UserField:

cdr_odbc.conf
Asterisk can store CDR data in a local or remote database via the ODBC interface. The
cdr_odbc.conf file contains the information Asterisk needs to connect to the database.
The cdr_odbc.so module will attempt to load the cdr_odbc.conf file, and if information
is found for connecting to a database, the CDR data will be recorded there.

If you are going to use a database for storing CDR data, you will have to
select one of the many that are available. Asterisk does not like having
multiple CDR databases to connect to, so do not have extra cdr_.conf
files hanging about your Asterisk configuration directory.

cdr_pgsql.conf
Asterisk can store CDR data in a PostgreSQL database via the cdr_pgsql.so module.
When the module is loaded the necessary information will be read from the cdr_
pgsql.conf file, and Asterisk will connect to the PostgreSQL database to write and
store CDR data.

cdr_tds.conf
Asterisk can also store CDR data to a FreeTDS database (including MS SQL) with the
use of the cdr_tds.so module. The configuration file cdr_tds.conf is read once the mod-
ule is loaded. Upon a successful connection, CDR data will be written to the database.

,appd.23268 Page 318 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

enum.conf | 319

codecs.conf
Most codecs do not have any configurable parameters—they are what they are, and
that’s all they are.

Some codecs, however, are capable of behaving in different ways. This primarily
means that they can be optimized for a particular goal, such as cutting down on
latency, making best use of a network, or perhaps delivering high quality.

The codecs.conf file is fairly new in Asterisk, and as of this writing it allows configura-
tion of Speex parameters only. The settings are self-explanatory, as long as you are
familiar with the Speex protocol (see http://www.speex.org).

codecs.conf also allows you to configure Packet Loss Concealment (PLC). You need
to define a [plc] section and indicate genericplc => true. This will cause Asterisk to
attempt to interpolate any packets that are missed. (Enabling this functionality will
incur a small performance penalty.)

dnsmgr.conf
This file is used to configure whether Asterisk should perform DNS lookups on a reg-
ular basis, and how often those lookups should be performed.

dundi.conf
The DUNDi protocol is used to dynamically look up the VoIP address of a phone
number on a network, and to connect to that number. Unlike the ENUM standard,
DUNDi has no central authority. The dundi.conf file contains DUNDi extensions
used to control what is advertised; it also contains the peers to whom you will sub-
mit lookup requests and from whom you will accept lookup requests. The DUNDi
protocol was explored in Chapter 10.

enum.conf
The Electronic Numbering (ENUM) system is used in conjunction with the Inter-
net’s DNS system to map E.164 ITU standard (ordinary telephone) numbers to email
addresses, web sites, VoIP addresses, and the like. An ENUM number is created in
DNS by reversing the phone number, separating each digit with a period, and
appending e164.arpa (the primary DNS zone). If you want Asterisk to perform
ENUM lookups, configure the domain(s) in which to perform the lookups within the
enum.conf file. In addition to the official e164.arpa domain, you can have Asterisk
perform lookups in the publicly accessible e164.org domain.

,appd.23268 Page 319 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

320 | Appendix D: Configuration Files

extconfig.conf
Asterisk can write configuration data to and load configuration data from a database
using the external configuration engine (also known as realtime). This enables you to
map external configuration files (static mappings) to a database, allowing the infor-
mation to be retrieved from the database. It also allows you to map special runtime
entries that permit the dynamic creation and loading of objects, entities, peers, and
so on without a reload. These mappings are assigned and configured in the extconfig.
conf file, which is used by both res_odbc and realtime.

extensions.conf
At the center of every good universe is a dialplan. The extensions.conf file is the
means by which you tell Asterisk how you want calls to be handled. The dialplan
contains a list of instructions that, unlike traditional telephony systems, is entirely
customizable. The dialplan is so important that rather than defining it in this appen-
dix, we have dedicated all of Chapters 5 and 6, as well as Appendix B, to this topic.
Go forth, read, and enjoy!

features.conf
features.conf, the file formally known as parking.conf, contains configuration infor-
mation related to call parking and call transfers. Call parking configuration options
include:

• The extension to dial to park calls (parkext =>)

• The extension range to park calls in (parkpos =>)

• Which context to park calls in (context =>)

• How long a call can remain parked for before ringing the extension that parked
it (parkingtime =>)

• The sound file played to the parked caller when the call is removed from park-
ing (courtesytone =>)

• ADSI parking announcements (asdipark=yes|no)

In addition to the call parking options, in this file you can configure the button map-
pings for blind transfers, attended transfers, one-touch recording, disconnections,
and the pickup extension (which allows you to answer a remotely ringing extension).

festival.conf
The Festival text-to-speech engine allows Asterisk to read text files to the end user
with a computer-generated voice. Festival is covered in Chapter 10.

,appd.23268 Page 320 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

logger.conf | 321

iax.conf
Similar to sip.conf, the iax.conf file is where you configure options related to the IAX
protocol. Your end devices and service providers are also configured here. iax.conf is
covered in detail in Appendix A.

iaxprov.conf
This file is used by Asterisk to allow the system to upgrade the firmware on an IAXy
device.

indications.conf
The indications.conf file is used to tell Asterisk how to generate the various tele-
phone sounds common in different parts of the world—a dial tone in England
sounds very different from a dial tone in Canada, but your Asterisk system will be
pleased to make the sounds you want to hear. This file consists of a list of sounds a
telephone system might need to produce (dial tone, busy signals, and so forth), fol-
lowed by the frequencies used to generate those sounds.

By default (and without an indications.conf file), Asterisk will use the tones common
in North America. You can change the default country for your system by specifying
the two-letter country code in the [general] section. Supported country codes are
listed in the indications.conf.sample file located in /usr/src/asterisk/configs. If you have
the required information, your country can easily be added. Here’s what the configu-
ration for North America looks like:

[general]
country=us
;
[us]
description = United States / North America
ringcadance = 2000,4000
dial = 350+440
busy = 480+620/500,0/500
ring = 440+480/2000,0/4000
congestion = 480+620/250,0/250
callwaiting = 440/300,0/10000
dialrecall = !350+440/100,!0/100,!350+440/100,!0/100,!350+440/100,!0/100,350+440
record = 1400/500,0/15000
info = !950/330,!1400/330,!1800/330,0

logger.conf
The logger.conf file specifies the type and verbosity of messages logged to the various
log files in the /var/log/asterisk/ directory. It has two sections, [general] and
[logfile].

,appd.23268 Page 321 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

322 | Appendix D: Configuration Files

[general]

Settings under the [general] section are used to customize the output of the logs
(and can safely be left blank, as the defaults serve most people very well). However, if
you love to customize such things, read on.

You can define exactly how you want your timestamps to look through the use of the
dateformat parameter:

dateformat=%F %T

The Linux man page for strftime(3) lists all of the ways you can do this.

If you want to append your system’s hostname to the names of the log files, set
appendhostname=yes. This can be useful if you have a lot of systems delivering log files
to you.

If for some reason you do not want to log events from your queues, you can set
queue_log=no.

If generic events do not interest you, instruct Asterisk to omit them from the by set-
ting event_log=no.

[logfiles]

The [logfiles] section defines the types of information you wish to log. There are
multiple ranks for the various bits of information that will be logged, and it can be
desirable to separate log entries into different files. The general format for lines in the
[logfiles] section is filename => levels, where filename is the name of the file to save
the logged information to and levels are the types of information you wish to save.

Using console for the filename is a special exception that allows you to
control the type of information sent to the Asterisk console.

A sample [logfiles] section might look like this:

[logfiles]
console => notice,warning,error
messages => notice,warning,error

You can specify logging of the following types of information:

debug
Enabling debugging gives far more detailed output about what is happening in
the system. For example, with debugging enabled, you can see what DTMF
tones the users entered while accessing their voicemail boxes. Debugging infor-
mation should be logged only when you are actually debugging something, as it
will create massive log files very rapidly.

,appd.23268 Page 322 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

manager.conf | 323

verbose
When you connect to the Asterisk console and set a verbosity of 3 or higher, you’ll
see output on the console showing what Asterisk is doing. You can save this output
to a log file by adding a line such as verbose_log => verbose to your logger.conf file.
Note that a high amount of verbosity can quickly eat up hard drive space.

notice
A notice is used to inform you of minor changes to the system, such as when a
peer changes state. It is normal to see these types of messages, and the events
they indicate generally have no adverse effects on the server.

warning
A warning happens when Asterisk attempts to do something and is unsuccess-
ful. These types of errors are usually not fatal, but they should be investigated,
especially if a lot of them are seen.

error
Errors are often related to Out of Memory errors. They generally indicate seri-
ous problems that may lead to Asterisk to crashing or freezing.

manager.conf
The Asterisk Manager interface is an API that external programs can use to commu-
nicate with and control Asterisk, much as you would do from the Asterisk console.

The Manager gives programs the ability to run commands and request
information from the Asterisk server. However, it is not very secure—
its authentication mechanism uses plain-text passwords, and all con-
nected terminals receive all events. The Asterisk Manager should be
used only on a trusted local area network, or locally on the box. The
permit and deny constructs allow you to restrict access to certain
extensions or subnets.

Many of the available graphical interfaces to Asterisk—such as the Flash Operator
Panel—use the Manager to pull data and determine the status of applications. The
manager.conf file defines the way programs authenticate with the Manager.

The Manager commands (which you can list by typing show manager commands at the
Asterisk console) have varying degrees of privilege. You can control the read and
write permissions for these commands with the use of the read and write options in
the manager.conf file.

Here’s a sample manager.conf file:

[general]
enabled = no
port = 5038
bindaddr = 0.0.0.0

,appd.23268 Page 323 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

324 | Appendix D: Configuration Files

[magma]
secret = welcome
deny=0.0.0.0/0.0.0.0
permit= 192.168.1.0/255.255.255.0
read = system,call,log,verbose,command,agent,user
write = system,call,log,verbose,command,agent,user

meetme.conf
MeetMe is one of the more remarkable applications in Asterisk. This rather simple
concept has proven to be extremely expensive to implement in every other PBX, but
what seems like a big deal to them is simple to Asterisk. Whether by using a dedi-
cated server, or through the use of a service, Asterisk now delivers this functionality
as a standard application.

MeetMe conferences can be created either dynamically, with the d flag in the Dial()
application, or statically in the meetme.conf file. The format for creating conference
rooms is as follows:

conf => conference_number[,pin][,administrator_pin]

All conferences must be defined under the [rooms] section header.

[rooms]
conf => 4569
conf => 5060,54377017
conf => 3389,4242,1337
conf => 333,,2424

mgcp.conf
The Media Gateway Control Protocol (MGCP) has only primitive support in Aster-
isk. This is likely due to the fact that SIP has stolen the limelight from every other
VoIP protocol (except IAX, of course). Because of this, you should attempt to use
Asterisk’s MCGP channel in a production environment only if you are prepared to
perform extensive testing, are willing to pay to have features and patches imple-
mented within your time frames, and have in-house expertise with the protocol.

Having said that, we are not prepared to pronounce MGCP dead. SIP is not yet the
panacea it has been touted as, and MGCP has proven itself to be very useful in car-
rier backbone environments. Many believe MGCP will fill a niche or void that has
not yet been discovered, and we remain interested in it.

modem.conf
The modem.conf file is used by Asterisk to communicate with ISDN-BRI interfaces
through the ISDN4Linux driver. Since ISDN4Linux lacks many core ISDN features,

,appd.23268 Page 324 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

privacy.conf | 325

it is not generally used. For BRI, the most popular add-on seems to be chan_capi,
available from http://www.junghanns.net.

musiconhold.conf
The musiconhold.conf file is used to configure different classes of music and their
locations for use in Music on Hold applications. Asterisk makes use of the mpg123
application to play music to channels. You can specify arguments for a class, allow-
ing you to use an external application to stream music either locally or over a net-
work. Recently, native Music on Hold has been implemented, allowing Asterisk to
play music without any external processes. If the file is available in the same format
as the codec of the active channel, no transcoding will occur.

osp.conf
The Open Settlement Protocol (OSP) is officially documented in ETSI TS 101 321, a
European Telecommunication Standards Institute (ETSI) document that came out of
the work of the TIPHON working group. As far as we can tell, OSP is another
attempt to apply old-style telecom thinking to disruptive technologies.

oss.conf
The oss.conf file is used to configure Asterisk to use the Open Sound System (OSS)
driver to allow communications with the sound card via the CONSOLE channel.
Note that ALSA is now the preferred interface for the CONSOLE channel.

phone.conf
The phone.conf file is used to configure a Quicknet PhoneJACK card. The Phone-
JACK card seems to provide something like an FXS interface, in that you can plug an
analog telephone into it and pass calls through Asterisk.

privacy.conf
The privacy.conf file is used to control the maximum number of tries a user has to
enter his 10-digit telephone number in the PrivacyManager() application. The
PrivacyManager() application determines if a Caller ID is set for the incoming call. If
the user fails to enter his 10-digit number within the number of tries configured in
privacy.conf, the call is sent to priority n + 101 (if it exists). If the Caller ID is set, the
application does nothing.

,appd.23268 Page 325 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

326 | Appendix D: Configuration Files

queues.conf
Asterisk provides basic call center functionality via its queueing system, but those
who are using it in more mission-critical environments often report that their solu-
tions required customization. You can do this customization in the queues.conf file.

The [general] section of queues.conf contains settings that will apply to all queues.
Currently, the only parameter that is supported is persistentmembers. If this parame-
ter is set to yes, a member that is added to the system via the AddQueueMember() appli-
cation will be stored in the AstDB, and therefore retained across a restart.

You can define a queue by placing its name inside of square brackets ([]). Within
each queue, the following parameters are available:

musiconhold
This parameter allows you to configure which Music on Hold class (configured
in musiconhold.conf) to use for the queue.

announce
When a call is presented to a member of the queue, the prompt specified by
announce will be played to that agent before the caller is connected. This can be
useful for agents who are logged into more than one queue. You can specify
either the full path to the file, or a path relative to /var/lib/asterisk/sounds/.

strategy
Asterisk can use six strategies to distribute calls to agents:

ringall
The queue rings every available agent and connects the call to whichever
agent answers first (this is the default).

roundrobin
The queue cycles through the agents until it finds one who is available to
take the call. roundrobin does not take into account the workload of the
agents. Also, because roundrobin always starts with the first agent in the
queue, this strategy is suitable only in an environment where you want your
higher-ranked agents to handle all calls unless they are busy, in which case
the lower-ranked agents may get a call.

leastrecent
The call is presented to the agent who has not been presented a call for the
longest period of time.

fewestcalls
The call is presented to the agent who has received the least amount of calls.
This strategy does not take into account the actual agent workloads; it only
considers the number of calls they have taken (for example, an agent who
has had 3 calls that each lasted for 10 minutes will be preferred over an
agent who has had 5 calls each lasting 2 minutes).

,appd.23268 Page 326 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

queues.conf | 327

random
As its name suggests, the random strategy chooses an agent at random. In a
small call center, this strategy may prove to be the most fair.

rrmemory
The queue cycles through each agent, keeping track of which agent last
received a call (this strategy is known as round-robin memory). This ensures
that call presentation cycles through the agents as fairly as possible.

servicelevel
In a call center, the service level represents the maximum amount of time a caller
should ideally have to wait before being presented to an agent. For example, if
servicelevel is set to 60 and the service level percentage is 80%, that means
80% of the calls that came into the queue were presented to an agent in less than
60 seconds.

context
If a context is assigned to a queue, the caller will be able to press a single digit to
exit to the corresponding extension within the configured context, if it exists.
This action takes the caller out of the queue, which means that she will lose her
place in the queue—be aware of this when you use this feature.

timeout
The timeout value defines the maximum amount of time (in seconds) to let an
agent’s phone ring before deeming the agent unavailable and placing the call
back into the queue.

retry
When a timeout occurs, the retry value specifies how many seconds to wait
before presenting the call again to an available agent.

weight
The weight parameter assigns a rank to the queue. If calls are waiting in multiple
queues, those queues with the highest weight values will be presented to agents
first. When you are designing your queues, be aware that this strategy can pre-
vent a call in a lower-weighted queue from ever being answered. Always ensure
that calls in lower-weighted queues eventually get promoted to higher-weighted
queues to ensure that they don’t have to hold forever.

wrapuptime
You can configure this parameter to allow agents a few seconds of downtime
after completing a call before the queue presents them with another call.

maxlen
maxlen is the maximum number of calls that can be added to the queue before
the call goes to the next priority of the current extension.

announce-frequency
The announce-frequency value (defined in seconds) determines how often to
announce to the caller his place in the queue and estimated hold time.

,appd.23268 Page 327 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

328 | Appendix D: Configuration Files

announce-holdtime
There are three possible values for this parameter: yes, no, and once. The
announce-holdtime parameter determines whether or not to include the esti-
mated hold time within the position announcement. If set to once, it will be
played to the caller only once.

monitor-format
This parameter accepts three possible values: wav, gsm, and wav49. By enabling
this option, you are telling Asterisk that you wish to record all completed calls in
the queue in the format specified. If this option is not specified, no calls will be
recorded.

monitor-join
The Monitor() application in Asterisk normally records either end of the conver-
sation in a separate file. Setting monitor-join to yes instructs Asterisk to merge
the files at the end of the call.

joinempty
This parameter accepts three values: yes, no, and strict. It allows you to deter-
mine whether callers can be added to a queue based on the status of the mem-
bers of the queue. The strict option will not allow callers to join the queue if all
members are unavailable.

leavewhenempty
This parameter determines whether you want your holding callers to be removed
from the queue when the conditions preventing a caller from joining exist (i.e.,
when all of your agents log out and go home).

eventwhencalled
Set eventwhencalled to yes if you wish to have queue events presented on the
Manager interface.

eventmemberstatusoff
Setting this parameter to no will generate extra information pertaining to each
queue member.

reportholdtime
If you set this parameter to yes, the amount of time the caller held before being
connected will be announced to the answering agent.

memberdelay
This parameter defines whether a delay will be inserted between the time when
the queue identifies a free agent and the time when the call is connected to that
agent.

member => member_name
Members of a queue can be either channel types or agents. Any agents you list
here must be defined in the agents.conf file.

,appd.23268 Page 328 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

rtp.conf | 329

res_odbc.conf
The purpose of the res_odbc.so module is to store configuration file information in a
database and retrieve that information from the database; however a reload is
required to make changes take effect. The res_odbc.conf file specifies how to access
the table within the database. The extconfig.conf file is used to determine how to
connect to the database.

rpt.conf
The rpt.conf file is used to configure Jim Dixon’s newest science project. Jim’s Radio
Repeater Application (app_rpt) allows Asterisk to communicate using VoIP via radio
repeater technology. This allows people to efficiently provide large-area coverage of
wireless networking and routing information to the Amateur Radio public through
their local high-speed Internet connections.

rtp.conf
The rtp.conf file controls the Real-time Transport Protocol (RTP) ports that Asterisk
uses to generate and receive RTP traffic. The RTP protocol is used by SIP, H.323,
MGCP, and possibly other protocols to carry media between endpoints.

The default rtp.conf file uses the RTP port range of 10,000 through 20,000. How-
ever, this is far more ports than you’re likely to need, and many network administra-
tors may not be comfortable opening up such a large range in their firewalls. You can
limit the RTP port range by changing the upper and lower bound limits within the
rtp.conf file.

For every bidirectional SIP call between two endpoints, five ports are generally used:
port 5060 for SIP signaling, one port for the data stream and one port for the Real-
Time Control Protocol (RTCP) in one direction, and an additional two ports for the
data stream and RTCP in the opposite direction.

UDP datagrams contain a 16-bit field for a Cyclic Redundancy Check (CRC), which
is used to verify the integrity of the datagram header and its data. It uses polynomial
division to create the 16-bit checksum from the 64-bit header. This value is then
placed into the 16-bit CRC field of the datagram, which the remote end can then use
to verify the integrity of the received datagram.

Setting rtpchecksums=no requests that the OS not do UDP checksum creating/check-
ing for the sockets used by RTP. If you add this option to the sample rtp.conf file, it
will look like this:

[general]
rtpstart=10000
rtpend=20000
rtpchecksums=no

,appd.23268 Page 329 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

330 | Appendix D: Configuration Files

sip.conf
The sip.conf file defines all the SIP protocol options for Asterisk. The authentication
for endpoints, such as SIP phones and service providers, is also configured in this
file. Asterisk uses the sip.conf file to determine which calls you are willing to accept
and where those calls should go in relation to your dialplan. Many SIP-related
options are configured in sip.conf, which was covered in depth in Appendix A.

sip_notify.conf
Asterisk has the ability to reboot a SIP phone remotely by sending it a specially for-
matted, manufacturer-specific NOTIFY message (defined in sip_notify.conf) consisting
of an event. The phone receives this event, which it interprets as a reboot request.
Other phones are supported, but as of this writing only phones by Polycom have
been verified to work with this method.

skinny.conf
If you wish to connect to phones using Cisco’s proprietary Skinny Client Control
Protocol (SCCP), you can use the skinny.conf file to define the parameters and chan-
nels that will use it. However, since the Asterisk community uses the SIP image on
their Cisco phones, you may find it difficult to find community support for this
channel type.

voicemail.conf
The voicemail.conf file controls the Asterisk voicemail system (called Comedian
Mail). It consists of three main sections. The first, called [general], sets the general
system-wide settings for the voicemail system. The second, called [zonemessages],
allows you to configure different voicemail zones, which are a collection of time and
time zone settings. The third and final section is where you create one or more
groups of voicemail boxes, each containing the mailbox definitions.

(For more information on adding voicemail capabilities to your dialplan, see Chapter 6.)

General Voicemail Settings
The [general] section of voicemail.conf contains a plethora of options that affect the
entire voicemail system:

format
Lists the codecs that should be used to save voicemail messages. Codecs should
be separated with the pipe character (|). The first format specified is the format
used when attaching a voicemail message to an email. Defaults to wav49|gsm|wav.

,appd.23268 Page 330 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

voicemail.conf | 331

serveremail
Provides the email address from which voicemail notifications should be sent.

attach
Specifies whether or not Asterisk should attach the voicemail sound file to the
voicemail notification email.

maxmessage
Sets the maximum length of a voicemail message, in seconds.

minmessage
Sets the minimum length of a voicemail message, in seconds.

maxgreet
Sets the maximum length of voicemail greetings, in seconds.

skipms
Specifies how many milliseconds to skip forward/back when the user skips for-
ward or backward during message playback.

maxsilence
Indicates how many seconds of silence to allow before ending the recording.

silencethreshold
Sets the silence threshold (what we consider “silence”—the lower the threshold
is, the more sensitive it is).

maxlogins
Sets the maximum allowed number of failed login attempts.

externnotify
Supplies the full path and filename of an external program to be executed when
a voicemail is left or delivered, or when a mailbox is checked.

externpass
Supplies the full path and filename of an external program to be executed when-
ever a voicemail password is changed.

directoryintro
If set, overrides the default introduction to the dial-by-name directory.

charset
Defines the character set for voicemail messages.

adsifdn
Specifies the ADSI feature descriptor number to download to.

adsisec
Sets the ADSI security lock code.

adsiver
Indicates the ADSI voicemail application version number.

pbxskip
Causes Asterisk not to add the string [PBX]: to the beginning of the subject line
of a voicemail notification email.

,appd.23268 Page 331 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

332 | Appendix D: Configuration Files

fromstring:
Changes the From: string of voicemail notification email messages.

usedirectory
Permits a mailbox owner to select entries from the dial-by-name directory for
forwarding and/or composing new voicemail messages.

pagerfromstring
Changes the From: string of voicemail notification pager messages.

emailsubject
Specifies the email subject of voicemail notification email messages.

emailbody
Supplies the email body of voicemail notification email messages.

Please note that both the emailsubject and emailbody settings can use
the following variables to provide more in-depth information about
the voicemail:

• VM_NAME

• VM_DUR

• VM_MSGNUM

• VM_MAILBOX

• VM_CALLERID

• VM_CIDNUM

• VM_CIDNAME

• VM_DATE

mailcmd
Supplies the full path and filename of the program Asterisk should use to send
notification emails. This option is useful if you want to override the default email
program.

Voicemail Zones
As voicemail users may be located in different geographical locations, Asterisk pro-
vides a way to configure the time zone and the way the time is announced for differ-
ent callers. Each unique combination is known as a voicemail zone. You configure
your voicemail zones in the [zonemessages] section of voicemail.conf. Later, you can
assign your voicemail boxes to use the settings for one of these zones.

Each voicemail zone definition consists of a line with the following syntax:

zonename=timezone | time_format

The zonename is an arbitrary name used to identify the zone. The timezone argument
is the name of a system time zone, as found in /usr/share/zoneinfo. The time_format
argument specifies how times should be announced by the voicemail system. The
time_format argument is made up of the following elements:

,appd.23268 Page 332 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

voicemail.conf | 333

'filename'
The filename of a sound file to play (single quotes around the filename are
required)

${VAR}
Variable substitution

A or a
The day of the week (Saturday, Sunday, etc.)

B or b or h
The name of the month (January, February, etc.)

d or e
The numeric day of the month (first, second… thirty-first)

Y
The year

I or l
The hour, in 12-hour format

H
The hour, in 24-hour format—single-digit hours are preceded by “oh”

k
The hour, in 24-hour format—single-digit hours are not preceded by “oh”

M
The minute

P or p
A.M. or .P.M.

Q
“today”, “yesterday,” or ABdY (note: not standard strftime value)

q
“” (for today), “yesterday”, weekday, or ABdY (note: not standard strftime value)

R
24-hour time, including minutes

For example, the following example sets up two different voicemail zones, one for
the Central time zone in 12-hour format, and a second in the Mountain time zone, in
24-hour format:

[zonemessages]
central=America/Chicago|'vm-received' Q 'digits/at' IMp
mountain24=America/Denver|'vm-received' q 'digits/at' H 'digits/hundred' M 'hours'

Defining Voicemail Contexts and Mailboxes
Now that the system-wide settings and voicemail zones have been set, you can define
your voicemail contexts and individual mailboxes.

,appd.23268 Page 333 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

334 | Appendix D: Configuration Files

Voicemail contexts are used to separate out different groups of voicemail users. For
example, if you are using Asterisk to host voicemail for more than one company, you
should place each company’s mailboxes in different voicemail contexts, to keep them
separate. You might also use voicemail contexts to create per-department dial-by-
name directories.

To define a new voicemail context, simply put the context name inside of square
brackets, like this:

[default]

Inside a voicemail context, each mailbox definition takes the following syntax:

mailbox=password,name[,email[,pager_email[,options]]]

The mailbox argument is the mailbox number.

The password argument is the code the mailbox owner must enter to access his voice-
mail. If the password is preceded by a minus sign (-), the password may not be
changed by the mailbox owner.

The email and pager_email arguments are email addresses where voicemail notifica-
tions will be sent. These may be left blank if you don’t want to send voicemail notifi-
cations via email.

The options argument is a pipe-separated list of voicemail options that may be speci-
fied for the mailbox. (These options may also be set globally by placing them in the
[general] section.) Valid voicemail options include:

tz
Sets the voicemail zone from the [zonemessages] section above. This option is
irrelevant if envelope is set to no.

attach
Attaches the voicemail to the notification email (but not to the pager email). May
be set to either yes or no.

saycid
Says the Caller ID information before the message.

cidinternalcontexts
Sets the internal context for name playback instead of extension digits when say-
ing the Caller ID information.

sayduration
Turns on/off the duration information before the message. Defaults to on.

saydurationm
Specifies the minimum duration to say when sayduration is on. Default is 2
minutes.

dialout
Specifies the context to dial out from (by choosing option 4 from the advanced
menu). If not specified, dialing out from the voicemail system will not be permitted.

,appd.23268 Page 334 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

voicemail.conf | 335

sendvoicemail
Specifies the context to send voicemail from (by choosing option 5 from the
advanced menu). If not specified, sending messages from within the voicemail
system will not be permitted.

callback
Specifies the context to call back from. If not specified, calling the sender back
from within the voicemail system will not be permitted.

review
Allows senders to review/rerecord their messages before saving them. Defaults to
off.

operator
Allows senders to hit 0 before, after, or while leaving a voicemail message to
reach an operator. Defaults to off.

envelope
Turns on/off envelope playback before message playback. Defaults to on. This
does not affect option 3,3 from the advanced options menu.

delete
Deletes voicemails from the server after notification is sent. This option may be
set only on a per-mailbox basis; it is intended for use with users who wish to
receive their voicemail messages only by email.

nextaftercmd
Skips to the next message after the user hits 7 or 9 to delete or save the current
message. This can be set only globally at this time, not on a per-mailbox basis.

forcename
Forces new users to record their names. A new user is determined by the pass-
word being the same as the mailbox number. Defaults to no.

forcegreetings
Forces new users to record greetings. A new user is determined by the password
being the same as the mailbox number. Defaults to no.

hidefromdir
Hides the mailbox from the dial-by-name directory. Defaults to no.

You can specify multiple options by separating them with the pipe character, as
shown in the definitions for mailboxes 9855 and 6522 below.

Here are some sample mailbox definitions:
[default]
; regular mailbox with email notification
101 => 4242,Example Mailbox,somebody@asteriskdocs.org

; more advanced mailbox with email and pager notification and a couple of
; special options
102 => 9855,Another User,another@asteriskdocs.org,pager@asteriskdocs.org,
attach=no|tz=central

,appd.23268 Page 335 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

336 | Appendix D: Configuration Files

; a mailbox with no email notification and lots of extra options
103 => 6522,John Q. Public,,,tz=central|attach=yes|saycid=yes|
dialout=fromvm|callback=fromvm|review=yes

vpb.conf
This file is used to configure Voicetronix cards with Asterisk.

zapata.conf
The zapata.conf file is used to define the relationship between Asterisk and the Zap-
tel driver. Because zapata.conf is specific to Asterisk, it is located with the other
Asterisk configuration files in /etc/asterisk/. As with zaptel.conf, the zapata.conf file
contains a multitude of choices reflecting the multitude of hardware it supports, and
we won’t try to list all of the options here. In this book we’ve covered only the ana-
log interfaces to the Zaptel driver, as described in Chapter 3.

zaptel.conf
The zaptel.conf file is not located with the other Asterisk .conf files—the Zaptel
driver is available to any application that can make use of it, so it makes more sense
to store it in a non-Asterisk-specific directory (/etc/). zaptel.conf is parsed by the ztcfg
program to configure the TDM hardware elements in your system. You configure
three main elements in the zaptel.conf file:

• A way of identifying the interfaces on the card within the dialplan

• The type of signaling the interface requires

• The tone language associated with a particular interface, as found in zonedata.c

Be very careful not to plug your FXS module into a telephone line. The
voltage associated with the phone line, especially during an incoming
call, will be much too high for the module to handle and may perma-
nently damage it, rendering it useless!

Within the zaptel.conf file, we define the type of signaling that the channel is going to
use. We also define which channels to load. The options in the configuration file are the
information that will be used to configure the channels with the ztcfg command.

The actual parameters available in the zaptel.conf file are quite extensive, as a wide
variety of PSTN interfaces make use of the Zaptel telephony engine. Also, as this
technology is rapidly evolving, anything we write now may not be accurate by the
time you read it. Consequently, we won’t try to list all of the options here.

In this book, we have focused on the Zaptel analog interfaces as provided by the
Digium TDM400P card (see Chapter 3).

,appd.23268 Page 336 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

337

Appendix E APPENDIX E

Asterisk Command-Line Interface
Reference

To access the Asterisk command-line interface (CLI), pass the -c or -r argument to
the Asterisk executable. In other words, type this from your shell prompt:

asterisk –r

If you want the system to provide you with more information about what it is doing
(an excellent idea, especially when you’re new to Asterisk), you can add the argu-
ment -v, as many times as you’d like:

asterisk –vvvvvvvvr

The more vs you include, the more vvvvvvvvvverbose the output will be.

The CLI allows you to interact with a running Asterisk server, and it will be very use-
ful to you for troubleshooting and monitoring.

Since the CLI employs tabbed name completion, you can press the Tab key to see a
list of possible commands. This makes the CLI very easy to use. Let’s take a look at
the commands.

!
!command

Executes a given shell command. If followed immediately by a carriage return, Asterisk
starts an interactive shell. You can return to the Asterisk CLI by executing an exit
command.

abort halt
abort halt

Cancels a requested Asterisk shutdown (betcha never get the chance, though!). This
command is only for the very fast-fingered.

,appe.23481 Page 337 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

338 | Appendix E: Asterisk Command-Line Interface Reference

add
The add command contains many subcommands that allow you to add functionality
to your Asterisk PBX without directly editing the configuration files.

When you add a new line to the dialplan your changes immediately become active,
but changes made to the dialplan from the command line are not permanent until
you save them (see save dialplan). All comments are stripped from the extensions.
conf file upon a save dialplan. The add commands are useful for making temporary
changes and for ad hoc testing, but we recommend that permanent changes to the
dialplan be made directly to extensions.conf in /etc/asterisk/.

add extension
add extension exten,priority,app,app_data into context [replace]

Adds a new extension into the specified context. If an extension with the same priority
exists, and the optional replace argument is given, replaces the existing extension.

add extension 500,1,Dial,IAX2/guest@misery.digium.com/s@default into local

add ignorepat
add ignorepat pattern into context

Adds a new ignore pattern into the specified context.

add ignorepat 9 into local

add queue member
add queue member channel to queue [penalty penalty]

Allows you to add a channel to a specified queue, optionally specifying a penalty with the
penalty option.

add queue member SIP/1000-d448 to customer_service penalty 10

agi
When you’re running an AGI program, you can turn debugging on and off with the
use of agi debug and agi no debug, respectively.

,appe.23481 Page 338 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

database deltree | 339

agi debug
agi debug

Turns on AGI debugging.

agi no debug
agi no debug

Turns off AGI debugging.

answer
answer

Answers an incoming call on the CONSOLE (OSS) channel. The OSS channel must be
configured in oss.conf before the answer command is available.

database
The Asterisk database is a simple implementation based on Version 1 of the Berke-
ley database. You can add entries to the database, remove entries from the database,
and view entries in the database with the following commands.*

database del
database del family key

Deletes an entry in the Asterisk database for a given family and key.

database del phones 1000/username

database deltree
database deltree family [keytree]

Deletes a family or a specific keytree within a family in the Asterisk database.

database deltree phones

* For more about the Asterisk database, see Chapter 6.

,appe.23481 Page 339 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

340 | Appendix E: Asterisk Command-Line Interface Reference

database get
database get family key

Retrieves an entry in the Asterisk database for a given family and key.

database get phones 1000/username

database put
database put family key value

Adds or updates an entry in the Asterisk database for a given family, key, and value.

database put phones 1000/username bob

database show
database show [family [key]]

Shows contents of database, or specific families, keys, and values.

database show phones

debug channel
debug channel channel_name

Allows a debug of a specific active channel. See also show channels.

debug channel SIP/1000-e54f

dial
dial [extension[@context]]

Dials a given extension (optionally, in the context specified) through the CONSOLE
channel. This command is available only if chan_oss.so or chan_alsa.so is loaded in the
modules.conf file.

dial 1000@phones

dont include
dont include context_to_be_removed in context

Removes a specified include from a context.

dont include local-extensions in incoming

,appe.23481 Page 340 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

iax2 | 341

dump agihtml
dump agihtml filename

Dumps a list of AGI commands in HTML format to the given filename. The file will be
saved to the /tmp/ directory by default, but a full path may be specified.

exit
exit

Closes the command-line interface, if you connected to the Asterisk console via the –r flag.
You cannot use the quit and exit commands to shut down the PBX (as would be the case if
the Asterisk were running in the foreground). To shut down the PBX rather than exiting
the console, see the stop and restart commands.

extensions reload
extensions reload

Reloads the dialplan configuration from the extensions.conf file. In other words, it reloads
only your dialplan; nothing else. This command is safe to run even when calls are active.
Any new channels being created will be based on the newly reloaded dialplan.

hangup
hangup

Hangs up any currently active calls placed using the CONSOLE channel. This command is
only available if chan_oss.so or chan_alsa.so is loaded in the modules.conf file.

help
help [command [subcommand]...]

Displays help for commands and command-line usage. A single question mark or tab will
do the same.

help show applications

iax2
Subsets of this command allow you to manage your IAX connections.

,appe.23481 Page 341 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

342 | Appendix E: Asterisk Command-Line Interface Reference

iax2 debug
iax2 debug

Enables IAX debugging.

iax2 no debug
iax2 no debug

Disables IAX debugging.

iax2 provision
iax2 provision host template [forced]

Used to configure an IAX device, such as Digium’s IAXy. Provisions the given peer or IP
address using a template matching either template or *‘ (if the template is not found).
Templates are configured in the iaxprov.conf file, usually located in /etc/asterisk/. If forced
is specified, empty provisioning fields will be provisioned as empty fields.

iax2 provision 192.168.1.100 default

iax2 show cache
iax2 show cache

Displays currently cached IAX dialplan results. Related to the switch => statement for
remote dialplans. Remote dialplans are cached for a period of time (600 seconds); they
then expire and must be requeried if used again.

iax2 show channels
iax2 show channels

Displays detailed information about active IAX channels.

iax2 show firmware
iax2 show firmware

Shows available IAX firmware.

iax2 show peer
iax2 show peer peer_name

Shows details on a specific IAX peer.

iax2 show peer iaxfwd

,appe.23481 Page 342 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

include context | 343

iax2 show peers
iax2 show peers [registered] [like pattern]

Lists all known IAX2 peers. The optional registered argument causes only peers with known
addresses to be listed. The optional regular expression pattern is used to filter the peer list.

iax2 show peers registered like iax*

iax2 show provisioning
iax2 show provisioning [template]

Lists all known IAX provisioning templates, or the details of a specific template.

iax2 show registry
iax2 show registry

Lists details and status of all registration requests.

iax2 show stats
iax2 show stats

Displays statistics for the IAX channel driver.

iax2 show users
iax2 show users [like pattern]

Lists all known IAX2 users. The optional regular expression pattern is used to filter the user
list.

iax2 show users like iax*

iax2 trunk debug
iax2 trunk debug

Requests the current status of IAX trunking. Trunking is enabled for a peer with trunk=yes
in iax.conf.

include context
include context in context

Includes the specified context in another context.

include local-users in incoming

,appe.23481 Page 343 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

344 | Appendix E: Asterisk Command-Line Interface Reference

indication
The loadzone option in a channel configuration file configures the tone zone to use
for a channel. A tone zone is a set of indications, as configured in indications.conf,
that contains information about all the various sounds that are common to tele-
phones in a particular country—dial tone, ringing cycles, busy tones, and so on. A
loaded tone zone is applied to a Zaptel channel, which will behave according to the
definition for its tone zone. The idea is to deliver familiar telephone sounds, wher-
ever in the world the users might be. Individual channels can have different indica-
tion sets configured, which means that a single Asterisk system can provide familiar
telephony behavior to people from different countries. The defaultzone is used if
nothing is specified for the channel.

indication add
indication add country indication "tonelist"

Adds the given indication to the country. See also show indications.

indication add us dial "350+440"

indication remove
indication remove country indication

Removes the given indication from the country. See also show indications.

indication remove us dial

init keys
init keys

Initializes private RSA keys using the passcode specified by the user. Keys are generated
with the use of the astgenkey script. Keys generated with the use of a passcode must be
initialized with the –i flag when starting Asterisk, or with the init keys command from the
CLI.

load
load module_name

Loads the specified module into Asterisk.

load chan_oss.so

,appe.23481 Page 344 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

meetme | 345

local show channels
local show channels

Shows the status of Local channels.

logger
In the logger.conf file, you can specify the various levels of detail the system will
record in its logs. The following commands allow you to reload and rotate those
files. Logs are typically stored in the /var/log/asterisk/ directory.

logger reload
logger reload

Reloads the log files. Required after making a change to the logger.conf configuration file.

logger rotate
logger rotate

Rotates and reopens the log files. When rotating, the old file is renamed to include a .n,
where n is the highest numbered logfile.n + 1. If logfile.n does not exist, the file is renamed
to logfile.0.

meetme
The meetme command can be used for a variety of purposes, including listing all
active conferences, the number of parties in a conference, the number of marked
users, the active length of a conference, and whether a conference was created
dynamically or statically.

A timing interface must be loaded in order for this command to be
available.

The following meetme subcommands can be used from the console to control active
conferences.

,appe.23481 Page 345 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

346 | Appendix E: Asterisk Command-Line Interface Reference

meetme kick
meetme kick confno [user_number | all]

Kicks (i.e., removes) one or all participants from an active conference.

meetme kick 100 all

meetme list
meetme list confno

Lists the associated channel names of conference participants and monitors status.

meetme list 100

meetme lock
meetme lock confno

Locks a conference from allowing any joins.

meetme lock 100

As the number of users in a conference grows, so does the load on the
CPU, as it has to mix all of the incoming streams into one, and then
transmit the result back out to all the participants. If you have adver-
tised a public conference and it suddenly becomes too popular, you
may want to lock out any further participants in order to preserve
sound quality.

meetme mute
meetme mute confno user_number

Mutes a user in the conference.

meetme mute 100 1

meetme unlock
meetme unlock confno

Unlocks a conference, allowing channels to join the active conference.

meetme unlock 100

,appe.23481 Page 346 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

pri show debug | 347

meetme unmute
meetme unmute confno user_number

Unmutes a user in the conference who is muted.

meetme unmute 100 1

pri
If you are running the ISDN-PRI protocol on any of your T1 spans, the following
commands will help you with troubleshooting.

pri debug
pri debug

Turns on PRI debugging.

pri intense debug span
pri intense debug span span

Enables very verbose debugging information for the D-channel of your PRI. This informa-
tion is invaluable when troubleshooting PRI connections to non-Asterisk systems (such as
the PSTN).

pri intense debug span 1

pri no debug
pri no debug

Turns off PRI debugging.

pri show debug
pri show debug [span]

Displays the status of PRI debugging and intense debugging for all spans or, optionally, a
single defined span.

,appe.23481 Page 347 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

348 | Appendix E: Asterisk Command-Line Interface Reference

pri show span
pri show span span

Displays extended information about a PRI span.

pri show span 1

quit
See exit.

reload
reload [module ...]

Reloads configuration files for all listed modules that support reloading (or for all
supported modules, if none are specified).

reload res_crypto.so

remove
The remove command contains many subcommands that allow you to remove func-
tionality from your Asterisk PBX without directly editing the configuration files.

This function can be used for ad hoc testing, but if you want to make the changes
permanent, it is recommended that you edit the various configuration files directly,
from /etc/asterisk/.

remove extension
remove extension exten@context [priority]

Removes a whole extension from a context. If the priority is specified, removes that priority
only within the given extension. Subsequent priorities within the extension will be renum-
bered if you use the n priority-naming scheme.*

remove extension 500@default 3

* If you have explicitly numbered your priorities, you will create a gap in your extension. This can easily be cor-
rected by adding a NoOp() command in the removed priority (e.g., add extension 500,3,Noop into default).

,appe.23481 Page 348 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

restart when convenient | 349

remove ignorepat
remove ignorepat pattern from context

Removes the ignore pattern from the given context.

remove ignorepat 9 from local

remove queue member
remove queue member channel from queue

Drops the active channel from the given queue. Queue members are the active channels
within a queue.

remove queue member SIP/1000-d448 from customer_service

restart
When a restart is performed, all channels are cleared (i.e., hung up) and all modules
are reloaded. You can also instruct Asterisk to restart only when there no longer any
active channels, thus preventing calls from being dropped.

restart gracefully
restart gracefully

Causes Asterisk to stop accepting new calls and perform a cold restart when all active calls
have ended.

restart now
restart now

Causes Asterisk to immediately hang up all calls and perform a cold restart.

restart when convenient
restart when convenient

Causes Asterisk to perform a cold restart when all active calls have ended. New calls are
accepted, and only when all calls have completed is the restart performed. Use this command
very carefully, as you have no way of knowing when the conditions for the restart will be met.
On a busy system, the restart might not occur until well after you’ve forgotten you requested
it. The best practice on a busy system is to execute restarts manually.

,appe.23481 Page 349 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

350 | Appendix E: Asterisk Command-Line Interface Reference

save dialplan
save dialplan

Saves the current dialplan from the command line to the extensions.conf file. It is impor-
tant to remember that all comments are stripped from the dialplan upon saving. It is
recommended that permanent changes to the dialplan be made directly in the extensions.
conf file and then reloaded (see extensions reload) to preserve comments.

set
The set command is used to control the amount of debugging information on the
console. If connecting to a remote Asterisk console, be aware that changes made to
the level of debugging have global scope—that is, they affect all consoles. Also be
sure to lower the debugging level before exiting if you are logging to a text file (see
logger).

set debug
set debug level

Sets the level of core debug messages to be displayed. 0 means no messages are displayed.
Equivalent to -d[d[d...]] on startup.

set debug 10

set verbose
set verbose level

Sets the verbosity level on the console. A setting of 0 means that no information on calling
activity will be displayed. If you request 10, you’ll be seeing a lot of activity indeed (espe-
cially on a busy system). This command has the exact same effect as the -v[v[v...]] flags
you provide on startup.

set verbose 10

show
The show subcommands are used to display all kinds of information about your
system.

,appe.23481 Page 350 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

show channels | 351

show agents
show agents

Provides summary information about agents configured in agents.conf.

show agi
show agi [topic]

Displays usage information on the given command, when called with a topic as an argu-
ment. If called without a topic, provides a list of AGI commands.

show agi channel status

show application
show application application [application [application [...]]]

Displays extended information about one (or, optionally, more than one) given application.

show application dial

show applications
show applications

Lists brief explanations of all currently available applications.

show channel
show channel channel

Displays extended information about the given channel.

show channel SIP/1000-3d43

show channels
show channels [concise]

Lists the currently defined channels and some information about them. If concise is speci-
fied, the format is abridged and presented in a more easily machine-parsable format.

,appe.23481 Page 351 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

352 | Appendix E: Asterisk Command-Line Interface Reference

show dialplan
show dialplan [context]

Shows the current state of the dialplan as loaded into memory. If a context name is
appended to the end of the command, only that context will be shown. The show dialplan
command is useful for verifying the order of pattern matching as well.

show dialplan incoming

If you type show dialplan and then press the Tab key a few times,
you’ll be presented with a list of all the contexts in your dialplan. On
the Asterisk CLI, the Tab key can yield all kinds of neat information. If
in doubt, press Tab.

show indications
show indications [country [...]]

Displays a condensed list of countries, or optionally a detailed list of indications for one or
more countries. See also indications add and indications remove.

show indications us

show keys
show keys

Lists the encryption keys on your system. Keys are stored in /var/lib/asterisk/keys/ and are
loaded with the res_crypto.so module.

show manager command
show manager command command

Shows extended information about a Manager command. See also show manager commands.

show manager command setvar

show manager commands
show manager commands

Lists all available Manager commands and their privilege levels, and gives a brief synopsis
of each.

,appe.23481 Page 352 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

show uptime | 353

show manager connected
show manager connected

Lists all currently connected Manager agents. Manager agents are configured in manager.conf.

show modules
show modules

Lists currently loaded modules, gives a brief description of each, and shows the module use
count.

show parkedcalls
show parkedcalls

Lists currently parked calls.

show queue
show queue queue

Provides extended information about a particular queue.

show queue customer_service

show queues
show queues

Provides extended information about all queues.

show translation
show translation

Displays a table of all codecs and their relative translation times between formats (provided
in milliseconds). The higher the number, the more work is required to transcode between
those formats. If the formats are native (i.e., the same), no transcoding is required—
Asterisk simply routes the packets, which requires very little processing time.

show uptime
show uptime

Displays Asterisk’s total uptime and the time since the last reload.

,appe.23481 Page 353 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

354 | Appendix E: Asterisk Command-Line Interface Reference

show version
show version

Displays the currently installed version of Asterisk. The version is controlled through the
.version file in the Asterisk sources. When updating the Asterisk source code, be sure to
perform a make update to update this value. The correct version is required when submit-
ting a bug report to the bug tracker (located at http://bugs.digium.com—be sure to read the
bug submission guidelines before submitting bugs!).

show voicemail users
show voicemail users [for vm_context]

Displays the voicemail context, mailbox number, voicemail zone, and number of new
messages for all voicemail users configured in voicemail.conf. Optionally, displays informa-
tion for a specific voicemail context.

show voicemail users for default

show voicemail zones
show voicemail zones

Displays the currently configured voicemail zones and their associated time zones and
message formats.

sip
The subsets of the sip command allow you to manage your SIP connections.

sip debug
sip debug

Turns on SIP debugging. This will be very verbose.

sip debug ip
sip [no] debug ip dotted_ip_notation

Debugs (or disables debugging of) SIP messages from a specific IP address. This is useful
when trying to debug messages coming from a peer who is not yet registered with you or is
not configured in sip.conf.

sip debug ip 192.168.1.100

,appe.23481 Page 354 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

sip show channels | 355

sip debug peer
sip [no] debug peer peer_name

Debugs (or disables debugging of) SIP messages from an individual peer, referenced by the
peer name configured in sip.conf. Debugging information can be displayed for a dynamic
host only if that host is registered with you. If you are trying to debug a registration issue,
see sip debug ip.

sip debug peer john

sip history
sip [no] history

Enables or disables SIP history recording. See also sip show history.

sip no debug
sip no debug

Turns off SIP debugging.

sip reload
sip reload

Reloads the SIP channel module. This is the equivalent of performing a reload chan_sip.
so. Reloading the SIP channel is required to load changes to sip.conf and sip_notify.conf
into memory. Active SIP channels are not dropped during a sip reload.

sip show channel
sip show channel channel

Displays extended information about an active SIP channel. See also sip show channels.

sip show channel 00036bdd-39

sip show channels
sip show channels

Displays a list of all active SIP channels. The value in the Call ID column is used by the sip
show channel command to display extended information about an individual channel. See
also sip show channel.

,appe.23481 Page 355 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

356 | Appendix E: Asterisk Command-Line Interface Reference

sip show history
sip show history channel

Provides a detailed log history for a given SIP channel.

sip show history 00036bdd-39

sip show peer
sip show peer peer_name

Displays detailed information about a peer configured in sip.conf.

sip show peer john

sip show peers
sip show peers

Lists and displays the status of all SIP peers.

sip show registry
sip show registry

Lists and displays the status of all peers with whom you are registered.

sip show user
sip show user user_name

Displays detailed information about a user in sip.conf.

sip show user 1000

sip show users
sip show users

Displays a listing of all users configured in sip.conf.

soft hangup
soft hangup channel

Requests a hangup on a given channel.

soft hangup SIP/1000-4248

,appe.23481 Page 356 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

zap | 357

stop
Asterisk has various ways of controlling how and when it stops the system. The
options are similar to the restart commands. You can instruct Asterisk to stop only
when there no longer any active channels, thus preventing calls from being dropped.

stop gracefully
stop gracefully

Stops the system when all currently active calls have completed, and does not accept new
calls.

stop now
stop now

Stops immediately, terminating all active calls.

stop when convenient
stop when convenient

Stops the system when all currently active calls have completed. New calls are accepted,
and the system will stop only when there are no longer any active calls. Using this
command is not a good idea, since you have no real way of knowing when the necessary
condition for stopping the system will occur.

unload
unload [-f | -h] module_name

Unloads the specified module from Asterisk. The –f option causes the module to be
unloaded even if it is in use (which may cause a crash), and the -h option causes the
module to be unloaded even if the module says it cannot be, which will almost always
cause a crash.

unload app_math.so

zap
The Zaptel interfaces allow Asterisk to interact via a physical medium, either analog
or digital. This may include telephones, analog PSTN connections, or digital circuits
such as T-1/E-1 circuits.

,appe.23481 Page 357 Wednesday, August 31, 2005 5:02 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

358 | Appendix E: Asterisk Command-Line Interface Reference

zap destroy channel
zap destroy channel channel_number

Immediately removes a channel, whether or not it is in use.

zap destroy channel 1

zap show cadences
zap show cadences

Displays the configuration of the various ring cadences (ring tones) Asterisk has configured
for an analog circuit (FXS).

zap show channel
zap show channel channel_number

Displays extended information about a particular Zaptel channel.

zap show channel 1

zap show channels
zap show channels

Lists all Zaptel channels and their associated extensions, languages, and default Music on
Hold classes.

,appe.23481 Page 358 Wednesday, August 31, 2005 5:02 PM

